Chunxia Qin, Yangmeihui Song, Weibo Cai, Xiaoli Lan
{"title":"Dimeric FAPI with potential for tumor theranostics.","authors":"Chunxia Qin, Yangmeihui Song, Weibo Cai, Xiaoli Lan","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Radionuclide-labeled fibroblast activation protein inhibitors (FAPIs) are popular nuclear imaging probes in recent years. It's of great significance for tumor diagnosis and has great potential in tumor treatment. However, optimization of the probes is needed to further increase tumor uptake and prolong tumor retention for improved treatment efficacy and fewer side effects. In this issue of AJNMMI, Moon et al. reported two squaramide coupled FAPI conjugates (DOTA.(SA.FAPi)<sub>2</sub> and DOTAGA.(SA.FAPi)<sub>2</sub>) and labeled them with <sup>68</sup>Ga. The resulted tracers showed increased tumor accumulation and persistent retention, which led to an advance in PET imaging. The use of dimeric structures provides a feasible strategy to develop radiotherapeutic analogs of FAP inhibitors.</p>","PeriodicalId":7572,"journal":{"name":"American journal of nuclear medicine and molecular imaging","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727879/pdf/ajnmmi0011-0537.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of nuclear medicine and molecular imaging","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Radionuclide-labeled fibroblast activation protein inhibitors (FAPIs) are popular nuclear imaging probes in recent years. It's of great significance for tumor diagnosis and has great potential in tumor treatment. However, optimization of the probes is needed to further increase tumor uptake and prolong tumor retention for improved treatment efficacy and fewer side effects. In this issue of AJNMMI, Moon et al. reported two squaramide coupled FAPI conjugates (DOTA.(SA.FAPi)2 and DOTAGA.(SA.FAPi)2) and labeled them with 68Ga. The resulted tracers showed increased tumor accumulation and persistent retention, which led to an advance in PET imaging. The use of dimeric structures provides a feasible strategy to develop radiotherapeutic analogs of FAP inhibitors.
期刊介绍:
The scope of AJNMMI encompasses all areas of molecular imaging, including but not limited to: positron emission tomography (PET), single-photon emission computed tomography (SPECT), molecular magnetic resonance imaging, magnetic resonance spectroscopy, optical bioluminescence, optical fluorescence, targeted ultrasound, photoacoustic imaging, etc. AJNMMI welcomes original and review articles on both clinical investigation and preclinical research. Occasionally, special topic issues, short communications, editorials, and invited perspectives will also be published. Manuscripts, including figures and tables, must be original and not under consideration by another journal.