Exploring Transfers between Earth-Moon Halo Orbits via Multi-Objective Reinforcement Learning.

Christopher J Sullivan, Natasha Bosanac, Rodney L Anderson, Alinda K Mashiku, Jeffrey R Stuart
{"title":"Exploring Transfers between Earth-Moon Halo Orbits via Multi-Objective Reinforcement Learning.","authors":"Christopher J Sullivan,&nbsp;Natasha Bosanac,&nbsp;Rodney L Anderson,&nbsp;Alinda K Mashiku,&nbsp;Jeffrey R Stuart","doi":"10.1109/aero50100.2021.9438267","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-Reward Proximal Policy Optimization, a multi-objective deep reinforcement learning algorithm, is used to examine the design space of low-thrust trajectories for a SmallSat transferring between two libration point orbits in the Earth-Moon system. Using Multi-Reward Proximal Policy Optimization, multiple policies are simultaneously and efficiently trained on three distinct trajectory design scenarios. Each policy is trained to create a unique control scheme based on the trajectory design scenario and assigned reward function. Each reward function is defined using a set of objectives that are scaled via a unique combination of weights to balance guiding the spacecraft to the target mission orbit, incentivizing faster flight times, and penalizing propellant mass usage. Then, the policies are evaluated on the same set of perturbed initial conditions in each scenario to generate the propellant mass usage, flight time, and state discontinuities from a reference trajectory for each control scheme. The resulting low-thrust trajectories are used to examine a subset of the multi-objective trade space for the SmallSat trajectory design scenario. By autonomously constructing the solution space, insights into the required propellant mass, flight time, and transfer geometry are rapidly achieved.</p>","PeriodicalId":93440,"journal":{"name":"IEEE Aerospace Conference. IEEE Aerospace Conference","volume":"50100 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/aero50100.2021.9438267","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Aerospace Conference. IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aero50100.2021.9438267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/7 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Multi-Reward Proximal Policy Optimization, a multi-objective deep reinforcement learning algorithm, is used to examine the design space of low-thrust trajectories for a SmallSat transferring between two libration point orbits in the Earth-Moon system. Using Multi-Reward Proximal Policy Optimization, multiple policies are simultaneously and efficiently trained on three distinct trajectory design scenarios. Each policy is trained to create a unique control scheme based on the trajectory design scenario and assigned reward function. Each reward function is defined using a set of objectives that are scaled via a unique combination of weights to balance guiding the spacecraft to the target mission orbit, incentivizing faster flight times, and penalizing propellant mass usage. Then, the policies are evaluated on the same set of perturbed initial conditions in each scenario to generate the propellant mass usage, flight time, and state discontinuities from a reference trajectory for each control scheme. The resulting low-thrust trajectories are used to examine a subset of the multi-objective trade space for the SmallSat trajectory design scenario. By autonomously constructing the solution space, insights into the required propellant mass, flight time, and transfer geometry are rapidly achieved.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用多目标强化学习探索地月光晕轨道之间的转移。
采用多目标深度强化学习算法多奖励近端策略优化,研究了小卫星在地月系统两个振动点轨道间转移的低推力轨道设计空间。利用多奖励最接近策略优化,在三种不同的轨迹设计场景下同时有效地训练多个策略。每个策略都经过训练,以基于轨迹设计场景和分配的奖励函数创建一个独特的控制方案。每个奖励函数都使用一组目标来定义,这些目标通过一个独特的权重组合来平衡引导航天器到达目标任务轨道、激励更快的飞行时间和惩罚推进剂的使用。然后,在每个方案的同一组扰动初始条件下对策略进行评估,以生成每个控制方案的推进剂质量使用量、飞行时间和参考轨迹的状态不连续度。所得的低推力轨道用于小卫星轨道设计方案的多目标交易空间的一个子集。通过自主构建解空间,可以快速获得所需推进剂质量、飞行时间和传输几何形状的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Venus Flagship Mission Concept: A Decadal Survey Study. Exploring Transfers between Earth-Moon Halo Orbits via Multi-Objective Reinforcement Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1