Lydia Trippler, Mohammed Nassor Ali, Shaali Makame Ame, Said Mohammed Ali, Fatma Kabole, Jan Hattendorf, Stefanie Knopp
{"title":"GPS-based fine-scale mapping surveys for schistosomiasis assessment: a practical introduction and documentation of field implementation.","authors":"Lydia Trippler, Mohammed Nassor Ali, Shaali Makame Ame, Said Mohammed Ali, Fatma Kabole, Jan Hattendorf, Stefanie Knopp","doi":"10.1186/s40249-021-00928-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Fine-scale mapping of schistosomiasis to guide micro-targeting of interventions will gain importance in elimination settings, where the heterogeneity of transmission is often pronounced. Novel mobile applications offer new opportunities for disease mapping. We provide a practical introduction and documentation of the strengths and shortcomings of GPS-based household identification and participant recruitment using tablet-based applications for fine-scale schistosomiasis mapping at sub-district level in a remote area in Pemba, Tanzania.</p><p><strong>Methods: </strong>A community-based household survey for urogenital schistosomiasis assessment was conducted from November 2020 until February 2021 in 20 small administrative areas in Pemba. For the survey, 1400 housing structures were prospectively and randomly selected from shapefile data. To identify pre-selected structures and collect survey-related data, field enumerators searched for the houses' geolocation using the mobile applications Open Data Kit (ODK) and MAPS.ME. The number of inhabited and uninhabited structures, the median distance between the pre-selected and recorded locations, and the dropout rates due to non-participation or non-submission of urine samples of sufficient volume for schistosomiasis testing was assessed.</p><p><strong>Results: </strong>Among the 1400 randomly selected housing structures, 1396 (99.7%) were identified by the enumerators. The median distance between the pre-selected and recorded structures was 5.4 m. A total of 1098 (78.7%) were residential houses. Among them, 99 (9.0%) were dropped due to continuous absence of residents and 40 (3.6%) households refused to participate. In 797 (83.1%) among the 959 participating households, all eligible household members or all but one provided a urine sample of sufficient volume.</p><p><strong>Conclusions: </strong>The fine-scale mapping approach using a combination of ODK and an offline navigation application installed on tablet computers allows a very precise identification of housing structures. Dropouts due to non-residential housing structures, absence, non-participation and lack of urine need to be considered in survey designs. Our findings can guide the planning and implementation of future household-based mapping or longitudinal surveys and thus support micro-targeting and follow-up of interventions for schistosomiasis control and elimination in remote areas. Trial registration ISRCTN, ISCRCTN91431493. Registered 11 February 2020, https://www.isrctn.com/ISRCTN91431493.</p>","PeriodicalId":13587,"journal":{"name":"Infectious Diseases of Poverty","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2022-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8761264/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Diseases of Poverty","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40249-021-00928-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Fine-scale mapping of schistosomiasis to guide micro-targeting of interventions will gain importance in elimination settings, where the heterogeneity of transmission is often pronounced. Novel mobile applications offer new opportunities for disease mapping. We provide a practical introduction and documentation of the strengths and shortcomings of GPS-based household identification and participant recruitment using tablet-based applications for fine-scale schistosomiasis mapping at sub-district level in a remote area in Pemba, Tanzania.
Methods: A community-based household survey for urogenital schistosomiasis assessment was conducted from November 2020 until February 2021 in 20 small administrative areas in Pemba. For the survey, 1400 housing structures were prospectively and randomly selected from shapefile data. To identify pre-selected structures and collect survey-related data, field enumerators searched for the houses' geolocation using the mobile applications Open Data Kit (ODK) and MAPS.ME. The number of inhabited and uninhabited structures, the median distance between the pre-selected and recorded locations, and the dropout rates due to non-participation or non-submission of urine samples of sufficient volume for schistosomiasis testing was assessed.
Results: Among the 1400 randomly selected housing structures, 1396 (99.7%) were identified by the enumerators. The median distance between the pre-selected and recorded structures was 5.4 m. A total of 1098 (78.7%) were residential houses. Among them, 99 (9.0%) were dropped due to continuous absence of residents and 40 (3.6%) households refused to participate. In 797 (83.1%) among the 959 participating households, all eligible household members or all but one provided a urine sample of sufficient volume.
Conclusions: The fine-scale mapping approach using a combination of ODK and an offline navigation application installed on tablet computers allows a very precise identification of housing structures. Dropouts due to non-residential housing structures, absence, non-participation and lack of urine need to be considered in survey designs. Our findings can guide the planning and implementation of future household-based mapping or longitudinal surveys and thus support micro-targeting and follow-up of interventions for schistosomiasis control and elimination in remote areas. Trial registration ISRCTN, ISCRCTN91431493. Registered 11 February 2020, https://www.isrctn.com/ISRCTN91431493.
期刊介绍:
Infectious Diseases of Poverty is a peer-reviewed, open access journal that focuses on essential public health questions related to infectious diseases of poverty. It covers a wide range of topics and methods, including the biology of pathogens and vectors, diagnosis and detection, treatment and case management, epidemiology and modeling, zoonotic hosts and animal reservoirs, control strategies and implementation, new technologies, and their application.
The journal also explores the impact of transdisciplinary or multisectoral approaches on health systems, ecohealth, environmental management, and innovative technologies. It aims to provide a platform for the exchange of research and ideas that can contribute to the improvement of public health in resource-limited settings.
In summary, Infectious Diseases of Poverty aims to address the urgent challenges posed by infectious diseases in impoverished populations. By publishing high-quality research in various areas, the journal seeks to advance our understanding of these diseases and contribute to the development of effective strategies for prevention, diagnosis, and treatment.