{"title":"Dietary lipids from body to brain","authors":"Custers, E.M. Emma, Kiliaan, J. Amanda","doi":"10.1016/j.plipres.2021.101144","DOIUrl":null,"url":null,"abstract":"<div><p>Dietary habits have drastically changed over the last decades in Western societies. The Western diet, rich in saturated fatty acids (SFA), trans fatty acids (TFA), omega-6 polyunsaturated fatty acids (n-6 PUFA) and cholesterol, is accepted as an important factor in the development of metabolic disorders, such as obesity and diabetes type 2. Alongside these diseases, nutrition is associated with the prevalence of brain disorders. Although clinical and epidemiological studies revealed that metabolic diseases and brain disorders might be related, the underlying pathology is multifactorial, making it hard to determine causal links. Neuroinflammation can be a result of unhealthy diets that may cause alterations in peripheral metabolism. Especially, dietary fatty acids are of interest, as they act as signalling molecules responsible for inflammatory processes. Diets rich in n-6 PUFA, SFA and TFA increase neuroinflammation, whereas diets rich in monounsaturated fatty acids (MUFA), omega-3 (n-3) PUFA and sphingolipids (SL) can diminish neuroinflammation. Moreover, these pro- and anti-inflammatory diets might indirectly influence neuroinflammation via the adipose tissue, microbiome, intestine and vasculature. Here, we review the impact of nutrition on brain health. In particular, we will discuss the role of dietary lipids in signalling pathways directly applicable to inflammation and neuronal function.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"85 ","pages":"Article 101144"},"PeriodicalIF":14.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163782721000606/pdfft?md5=50f371f180d9672ee8a22c8cff3bc286&pid=1-s2.0-S0163782721000606-main.pdf","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163782721000606","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 30
Abstract
Dietary habits have drastically changed over the last decades in Western societies. The Western diet, rich in saturated fatty acids (SFA), trans fatty acids (TFA), omega-6 polyunsaturated fatty acids (n-6 PUFA) and cholesterol, is accepted as an important factor in the development of metabolic disorders, such as obesity and diabetes type 2. Alongside these diseases, nutrition is associated with the prevalence of brain disorders. Although clinical and epidemiological studies revealed that metabolic diseases and brain disorders might be related, the underlying pathology is multifactorial, making it hard to determine causal links. Neuroinflammation can be a result of unhealthy diets that may cause alterations in peripheral metabolism. Especially, dietary fatty acids are of interest, as they act as signalling molecules responsible for inflammatory processes. Diets rich in n-6 PUFA, SFA and TFA increase neuroinflammation, whereas diets rich in monounsaturated fatty acids (MUFA), omega-3 (n-3) PUFA and sphingolipids (SL) can diminish neuroinflammation. Moreover, these pro- and anti-inflammatory diets might indirectly influence neuroinflammation via the adipose tissue, microbiome, intestine and vasculature. Here, we review the impact of nutrition on brain health. In particular, we will discuss the role of dietary lipids in signalling pathways directly applicable to inflammation and neuronal function.
期刊介绍:
The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.