Ping-Feng Xu, Laixu Shang, Qian-Zhen Zheng, Na Shan, Man-Lai Tang
{"title":"Latent variable selection in multidimensional item response theory models using the expectation model selection algorithm","authors":"Ping-Feng Xu, Laixu Shang, Qian-Zhen Zheng, Na Shan, Man-Lai Tang","doi":"10.1111/bmsp.12261","DOIUrl":null,"url":null,"abstract":"<p>The aim of latent variable selection in multidimensional item response theory (MIRT) models is to identify latent traits probed by test items of a multidimensional test. In this paper the expectation model selection (EMS) algorithm proposed by Jiang et al. (2015) is applied to minimize the Bayesian information criterion (BIC) for latent variable selection in MIRT models with a known number of latent traits. Under mild assumptions, we prove the numerical convergence of the EMS algorithm for model selection by minimizing the BIC of observed data in the presence of missing data. For the identification of MIRT models, we assume that the variances of all latent traits are unity and each latent trait has an item that is only related to it. Under this identifiability assumption, the convergence of the EMS algorithm for latent variable selection in the multidimensional two-parameter logistic (M2PL) models can be verified. We give an efficient implementation of the EMS for the M2PL models. Simulation studies show that the EMS outperforms the EM-based <i>L</i><sub>1</sub> regularization in terms of correctly selected latent variables and computation time. The EMS algorithm is applied to a real data set related to the Eysenck Personality Questionnaire.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"75 2","pages":"363-394"},"PeriodicalIF":1.5000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12261","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2
Abstract
The aim of latent variable selection in multidimensional item response theory (MIRT) models is to identify latent traits probed by test items of a multidimensional test. In this paper the expectation model selection (EMS) algorithm proposed by Jiang et al. (2015) is applied to minimize the Bayesian information criterion (BIC) for latent variable selection in MIRT models with a known number of latent traits. Under mild assumptions, we prove the numerical convergence of the EMS algorithm for model selection by minimizing the BIC of observed data in the presence of missing data. For the identification of MIRT models, we assume that the variances of all latent traits are unity and each latent trait has an item that is only related to it. Under this identifiability assumption, the convergence of the EMS algorithm for latent variable selection in the multidimensional two-parameter logistic (M2PL) models can be verified. We give an efficient implementation of the EMS for the M2PL models. Simulation studies show that the EMS outperforms the EM-based L1 regularization in terms of correctly selected latent variables and computation time. The EMS algorithm is applied to a real data set related to the Eysenck Personality Questionnaire.
期刊介绍:
The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including:
• mathematical psychology
• statistics
• psychometrics
• decision making
• psychophysics
• classification
• relevant areas of mathematics, computing and computer software
These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.