Latent variable selection in multidimensional item response theory models using the expectation model selection algorithm

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2021-12-17 DOI:10.1111/bmsp.12261
Ping-Feng Xu, Laixu Shang, Qian-Zhen Zheng, Na Shan, Man-Lai Tang
{"title":"Latent variable selection in multidimensional item response theory models using the expectation model selection algorithm","authors":"Ping-Feng Xu,&nbsp;Laixu Shang,&nbsp;Qian-Zhen Zheng,&nbsp;Na Shan,&nbsp;Man-Lai Tang","doi":"10.1111/bmsp.12261","DOIUrl":null,"url":null,"abstract":"<p>The aim of latent variable selection in multidimensional item response theory (MIRT) models is to identify latent traits probed by test items of a multidimensional test. In this paper the expectation model selection (EMS) algorithm proposed by Jiang et al. (2015) is applied to minimize the Bayesian information criterion (BIC) for latent variable selection in MIRT models with a known number of latent traits. Under mild assumptions, we prove the numerical convergence of the EMS algorithm for model selection by minimizing the BIC of observed data in the presence of missing data. For the identification of MIRT models, we assume that the variances of all latent traits are unity and each latent trait has an item that is only related to it. Under this identifiability assumption, the convergence of the EMS algorithm for latent variable selection in the multidimensional two-parameter logistic (M2PL) models can be verified. We give an efficient implementation of the EMS for the M2PL models. Simulation studies show that the EMS outperforms the EM-based <i>L</i><sub>1</sub> regularization in terms of correctly selected latent variables and computation time. The EMS algorithm is applied to a real data set related to the Eysenck Personality Questionnaire.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":"75 2","pages":"363-394"},"PeriodicalIF":1.5000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12261","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

Abstract

The aim of latent variable selection in multidimensional item response theory (MIRT) models is to identify latent traits probed by test items of a multidimensional test. In this paper the expectation model selection (EMS) algorithm proposed by Jiang et al. (2015) is applied to minimize the Bayesian information criterion (BIC) for latent variable selection in MIRT models with a known number of latent traits. Under mild assumptions, we prove the numerical convergence of the EMS algorithm for model selection by minimizing the BIC of observed data in the presence of missing data. For the identification of MIRT models, we assume that the variances of all latent traits are unity and each latent trait has an item that is only related to it. Under this identifiability assumption, the convergence of the EMS algorithm for latent variable selection in the multidimensional two-parameter logistic (M2PL) models can be verified. We give an efficient implementation of the EMS for the M2PL models. Simulation studies show that the EMS outperforms the EM-based L1 regularization in terms of correctly selected latent variables and computation time. The EMS algorithm is applied to a real data set related to the Eysenck Personality Questionnaire.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于期望模型选择算法的多维项目反应理论模型中潜在变量选择
在多维项目反应理论模型中,潜在变量选择的目的是识别多维测试项目所探测的潜在特征。本文采用Jiang等人(2015)提出的期望模型选择(EMS)算法,在已知潜在性状数量的MIRT模型中最小化潜在变量选择的贝叶斯信息准则(BIC)。在温和的假设条件下,我们通过最小化观测数据的BIC证明了EMS算法在存在缺失数据时的模型选择的数值收敛性。为了识别MIRT模型,我们假设所有潜在性状的方差是统一的,每个潜在性状都有一个只与它相关的项目。在此可辨识性假设下,验证了EMS算法在多维双参数logistic模型中隐变量选择的收敛性。我们给出了M2PL模型的EMS的有效实现。仿真研究表明,在正确选择潜在变量和计算时间方面,EMS优于基于em的L1正则化。将EMS算法应用于与艾森克人格问卷相关的真实数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
A new Q-matrix validation method based on signal detection theory. Discriminability around polytomous knowledge structures and polytomous functions. Understanding linear interaction analysis with causal graphs. Identifiability analysis of the fixed-effects one-parameter logistic positive exponent model. Regularized Bayesian algorithms for Q-matrix inference based on saturated cognitive diagnosis modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1