{"title":"Qualitative and Dynamical Analysis of a Bionomic Fishery Model with Prey Refuge","authors":"S. N. Raw, B. P. Sarangi","doi":"10.1007/s10441-022-09435-5","DOIUrl":null,"url":null,"abstract":"<div><p>Predation and escaping from predation through hiding are two fundamental phenomena in ecology. The most common approach to reducing the chance of predation is to use a refuge. Here, we consider a three species fishery model system with prey refuge induced by a Holling type-II functional response. These three species of fish populations are named prey, middle predator, and top predator. Harvesting is employed in most fishery models to achieve both ecological and commercial benefits. Research proves that non-linear harvesting (Michaelis–Menten type) returns more realistic outcomes. So, we have combined the Michaelis–Menten type of harvesting efforts for all populations. Uniform boundedness conditions for the solutions of the model are discussed. The existence conditions for possible equilibrium points with stability are presented. We explain the dynamical behavior at each equilibrium point through bifurcation analysis. The persistent criteria of the system are examined. Bionomic equilibrium and optimal harvesting control using Pontryagin’s maximum principle are calculated. For validation of the model in the real world, we have implemented this in the freshwater ecosystem of Lake Victoria. Extraction of native fish species and ecological balances are the foremost solicitude of Lake Victoria. We may resolve this concern partially by implementing prey refuge, since it may sustain the ecology of Lake Victoria, and therefore also its economical importance. Lake Victoria is acclaimed worldwide for the trade of fishing. Also, it provides the largest employment in east-central Africa and is beneficial to fishing equipment manufacturers. So, the bionomic equilibrium and harvesting control have significant applications in the fisheries. All the analytical studies are verified by numerical simulations. We have plotted phase portraits, bifurcation diagrams, Lyapunov exponents to explore the dynamics of the proposed model.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"70 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-022-09435-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Predation and escaping from predation through hiding are two fundamental phenomena in ecology. The most common approach to reducing the chance of predation is to use a refuge. Here, we consider a three species fishery model system with prey refuge induced by a Holling type-II functional response. These three species of fish populations are named prey, middle predator, and top predator. Harvesting is employed in most fishery models to achieve both ecological and commercial benefits. Research proves that non-linear harvesting (Michaelis–Menten type) returns more realistic outcomes. So, we have combined the Michaelis–Menten type of harvesting efforts for all populations. Uniform boundedness conditions for the solutions of the model are discussed. The existence conditions for possible equilibrium points with stability are presented. We explain the dynamical behavior at each equilibrium point through bifurcation analysis. The persistent criteria of the system are examined. Bionomic equilibrium and optimal harvesting control using Pontryagin’s maximum principle are calculated. For validation of the model in the real world, we have implemented this in the freshwater ecosystem of Lake Victoria. Extraction of native fish species and ecological balances are the foremost solicitude of Lake Victoria. We may resolve this concern partially by implementing prey refuge, since it may sustain the ecology of Lake Victoria, and therefore also its economical importance. Lake Victoria is acclaimed worldwide for the trade of fishing. Also, it provides the largest employment in east-central Africa and is beneficial to fishing equipment manufacturers. So, the bionomic equilibrium and harvesting control have significant applications in the fisheries. All the analytical studies are verified by numerical simulations. We have plotted phase portraits, bifurcation diagrams, Lyapunov exponents to explore the dynamics of the proposed model.
期刊介绍:
Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory.
Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts.
Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified.
Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.