Mayumi Iwasaki, Steven Penfield, Luis Lopez-Molina
{"title":"Parental and Environmental Control of Seed Dormancy in <i>Arabidopsis thaliana</i>.","authors":"Mayumi Iwasaki, Steven Penfield, Luis Lopez-Molina","doi":"10.1146/annurev-arplant-102820-090750","DOIUrl":null,"url":null,"abstract":"<p><p>Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In <i>Arabidopsis</i>, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"73 ","pages":"355-378"},"PeriodicalIF":21.3000,"publicationDate":"2022-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-102820-090750","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 16
Abstract
Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.
期刊介绍:
The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.