DGSLSTM: Deep Gated Stacked Long Short-Term Memory Neural Network for Traffic Flow Forecasting of Transportation Networks on Big Data Environment.
IF 2.6 4区 计算机科学Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONSBig DataPub Date : 2024-12-01Epub Date: 2022-02-10DOI:10.1089/big.2021.0013
Rajalakshmi Gurusamy, Siva Ranjani Seenivasan
{"title":"DGSLSTM: Deep Gated Stacked Long Short-Term Memory Neural Network for Traffic Flow Forecasting of Transportation Networks on Big Data Environment.","authors":"Rajalakshmi Gurusamy, Siva Ranjani Seenivasan","doi":"10.1089/big.2021.0013","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning and big data techniques have become increasingly popular in traffic flow forecasting. Deep neural networks have also been applied to traffic flow forecasting. Furthermore, it is difficult to determine whether neural networks can be used for accurate traffic flow prediction. Moreover, since the network model is poorly structured and the parameter optimization technique is inappropriate, the traffic flow prediction is inaccurate because of the lack of certainty. The proposed system overcomes these problems by combining multiple simple recurrent long short-term memory (LSTM) neural networks with time traits to predict traffic flow using a deep gated stacked neural network. To deepen the model, the hidden layers have been trained using an unsupervised layer-by-layer approach. This approach provides a systematic representation of the time series data. A systematic representation of hidden layers improves the accuracy of time series forecasting by capturing information at multiple levels. Furthermore, it emphasizes the importance of model structure, random weight initialization, and hyperparameters used in stacked LSTM to enhance predictive performance. The prediction efficacy of the deep gated stacked LSTM model is compared with that of the gated recurrent unit model and the stacked autoencoder model.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"504-517"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2021.0013","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep learning and big data techniques have become increasingly popular in traffic flow forecasting. Deep neural networks have also been applied to traffic flow forecasting. Furthermore, it is difficult to determine whether neural networks can be used for accurate traffic flow prediction. Moreover, since the network model is poorly structured and the parameter optimization technique is inappropriate, the traffic flow prediction is inaccurate because of the lack of certainty. The proposed system overcomes these problems by combining multiple simple recurrent long short-term memory (LSTM) neural networks with time traits to predict traffic flow using a deep gated stacked neural network. To deepen the model, the hidden layers have been trained using an unsupervised layer-by-layer approach. This approach provides a systematic representation of the time series data. A systematic representation of hidden layers improves the accuracy of time series forecasting by capturing information at multiple levels. Furthermore, it emphasizes the importance of model structure, random weight initialization, and hyperparameters used in stacked LSTM to enhance predictive performance. The prediction efficacy of the deep gated stacked LSTM model is compared with that of the gated recurrent unit model and the stacked autoencoder model.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.