{"title":"Halomonas faecis sp. nov., a halophilic bacterium isolated from human faeces.","authors":"Zhu-Xiang Liu, Jin-Hua Chen, Ling-Ling Yang, Yu-Zhou Feng, Li-Ying Deng, Jian-Wu He, Shu-Kun Tang, Yi-Guang Chen","doi":"10.1007/s00792-022-01269-w","DOIUrl":null,"url":null,"abstract":"<p><p>A novel moderately halophilic, Gram-stain-negative, catalase- and oxidase-positive, strictly aerobic, non-sporulating, non-motile rod, designated strain JSM 104105<sup> T</sup>, was isolated from human faeces. Strain JSM 104105<sup> T</sup> was able to grow with 0.5-18% (w/v) NaCl (optimum 4-9%), at pH 6-10.5 (optimum pH 7-8) and at 10-40 °C (optimum 30 °C) in complex media. The major cellular fatty acids were C<sub>18:1</sub>ω7c, C<sub>16:0</sub>, C<sub>16:1</sub>ω7c and/or C<sub>16:1</sub>ω6c, C<sub>19:0</sub> cyclo ω8c and C<sub>12:0</sub> 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid, an unidentified glycolipid and three unidentified phospholipids. The predominant respiratory quinone was Q-9 and the genomic DNA G + C content was 64.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 104105<sup> T</sup> should be assigned to the genus Halomonas, and was most closely related to Halomonas gudaonensis SL014B-69<sup> T</sup> (99.0% sequence similarity), followed by Halomonas azerbaijanica TBZ202<sup>T</sup> (98.6%) and Halomonas lysinitropha 3(2)<sup>T</sup> (97.3%). The whole genomic analysis showed that strain JSM 104105<sup> T</sup> constituted a different taxon separated from the recognized Halomonas species. Combined data from phenotypic and genotypic studies demonstrated that strain JSM 104105<sup> T</sup> represents a new species of the genus Halomonas, for which the name Halomonas faecis sp. nov. is proposed. The type strain is JSM 104105<sup> T</sup> (= CCTCC AB 2014160<sup> T</sup> = CGMCC 1.12945<sup> T</sup> = KCTC 42146<sup> T</sup>).</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00792-022-01269-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
A novel moderately halophilic, Gram-stain-negative, catalase- and oxidase-positive, strictly aerobic, non-sporulating, non-motile rod, designated strain JSM 104105 T, was isolated from human faeces. Strain JSM 104105 T was able to grow with 0.5-18% (w/v) NaCl (optimum 4-9%), at pH 6-10.5 (optimum pH 7-8) and at 10-40 °C (optimum 30 °C) in complex media. The major cellular fatty acids were C18:1ω7c, C16:0, C16:1ω7c and/or C16:1ω6c, C19:0 cyclo ω8c and C12:0 3-OH. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminophospholipid, an unidentified glycolipid and three unidentified phospholipids. The predominant respiratory quinone was Q-9 and the genomic DNA G + C content was 64.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 104105 T should be assigned to the genus Halomonas, and was most closely related to Halomonas gudaonensis SL014B-69 T (99.0% sequence similarity), followed by Halomonas azerbaijanica TBZ202T (98.6%) and Halomonas lysinitropha 3(2)T (97.3%). The whole genomic analysis showed that strain JSM 104105 T constituted a different taxon separated from the recognized Halomonas species. Combined data from phenotypic and genotypic studies demonstrated that strain JSM 104105 T represents a new species of the genus Halomonas, for which the name Halomonas faecis sp. nov. is proposed. The type strain is JSM 104105 T (= CCTCC AB 2014160 T = CGMCC 1.12945 T = KCTC 42146 T).