Meis1 plays roles in cortical development through regulation of cellular proliferative capacity in the embryonic cerebrum.

IF 1.3 4区 医学 Q4 MEDICINE, RESEARCH & EXPERIMENTAL Biomedical Research-tokyo Pub Date : 2022-01-01 DOI:10.2220/biomedres.43.91
Eriko Isogai, Kazuhiro Okumura, Megumi Saito, Yurika Tokunaga, Yuichi Wakabayashi
{"title":"Meis1 plays roles in cortical development through regulation of cellular proliferative capacity in the embryonic cerebrum.","authors":"Eriko Isogai,&nbsp;Kazuhiro Okumura,&nbsp;Megumi Saito,&nbsp;Yurika Tokunaga,&nbsp;Yuichi Wakabayashi","doi":"10.2220/biomedres.43.91","DOIUrl":null,"url":null,"abstract":"<p><p>Meis1 (myeloid ecotropic insertion site 1) is known to be related to embryonic development and cancer. In this study, to analyze the function of Meis1 in neural stem cells, we crossed Meis1<sup>fl/fl</sup> (Meis1 floxed) mice with Nestin-Cre mice. The results showed that Meis1-conditional knockout mice showed cerebral cortex malformation. The mice had a significantly thinner cortex than wildtype mice. At E14.5, BrdU incorporation and Pax6-positive radial glial cells were significantly decreased in the cerebral cortex of Meis1 knockout embryos as compared with wild-type embryos, whereas Tbr2-positive intermediate progenitors and NeuN-positive differentiated neurons were not. Cell death detected by immunostaining with cleaved caspase3 antibody showed no difference in the cortex between knockout and wild-type embryos. Furthermore, knockout of Meis1 in embryo by in utero electroporation showed that cellular migration was disturbed during cortical development. Therefore, Meis1 could play important roles during cortical development through the regulation of cell proliferation and migration in the embryonic cerebral cortex.</p>","PeriodicalId":9138,"journal":{"name":"Biomedical Research-tokyo","volume":"43 3","pages":"91-97"},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research-tokyo","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2220/biomedres.43.91","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3

Abstract

Meis1 (myeloid ecotropic insertion site 1) is known to be related to embryonic development and cancer. In this study, to analyze the function of Meis1 in neural stem cells, we crossed Meis1fl/fl (Meis1 floxed) mice with Nestin-Cre mice. The results showed that Meis1-conditional knockout mice showed cerebral cortex malformation. The mice had a significantly thinner cortex than wildtype mice. At E14.5, BrdU incorporation and Pax6-positive radial glial cells were significantly decreased in the cerebral cortex of Meis1 knockout embryos as compared with wild-type embryos, whereas Tbr2-positive intermediate progenitors and NeuN-positive differentiated neurons were not. Cell death detected by immunostaining with cleaved caspase3 antibody showed no difference in the cortex between knockout and wild-type embryos. Furthermore, knockout of Meis1 in embryo by in utero electroporation showed that cellular migration was disturbed during cortical development. Therefore, Meis1 could play important roles during cortical development through the regulation of cell proliferation and migration in the embryonic cerebral cortex.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meis1通过调控胚胎大脑的细胞增殖能力在皮质发育中发挥作用。
Meis1(髓系亲生态插入位点1)与胚胎发育和癌症有关。在本研究中,为了分析Meis1在神经干细胞中的功能,我们将Meis1fl/fl (Meis1 floxed)小鼠与nesting - cre小鼠杂交。结果显示,meis1条件敲除小鼠出现大脑皮质畸形。这些小鼠的皮质明显比野生型小鼠薄。在E14.5时,与野生型胚胎相比,Meis1基因敲除胚胎的大脑皮层中BrdU掺入和pax6阳性的放射状胶质细胞显著减少,而tbr2阳性的中间祖细胞和neun阳性的分化神经元则没有明显减少。用cleaved caspase3抗体免疫染色检测细胞死亡,结果显示敲除胚胎与野生型胚胎皮层无差异。此外,通过子宫内电穿孔敲除胚胎中的Meis1表明细胞迁移在皮质发育过程中受到干扰。因此,Meis1可能通过调控胚胎大脑皮层细胞的增殖和迁移,在皮层发育过程中发挥重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomedical Research-tokyo
Biomedical Research-tokyo 医学-医学:研究与实验
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Biomedical Research is peer-reviewed International Research Journal . It was first launched in 1990 as a biannual English Journal and later became triannual. From 2008 it is published in Jan-Apr/ May-Aug/ Sep-Dec..
期刊最新文献
Epigenetic modification of histone acetylation in the sensorimotor cortex after intracerebral hemorrhage. Distribution and anti-nociceptive function of endomorphin-1 in the rat cranial sensory ganglia. Indoxyl sulfate contributes to colorectal cancer cell proliferation and increased EGFR expression by activating AhR and Akt. Tenascin-X is increased with decreased expression of miR-378a-5p and miR-486-5p in mice fed a methionine-choline-deficient diet that induces hepatic fibrosis. Using hemoglobin vesicles to treat operative hemorrhagic shock after pneu- monectomy in dog models: an experimental study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1