Micropollutant removal capacity and stability of aquaporin incorporated biomimetic thin-film composite membranes

Q1 Immunology and Microbiology Biotechnology Reports Pub Date : 2022-09-01 DOI:10.1016/j.btre.2022.e00745
Hilal Yılmaz , Melek Özkan
{"title":"Micropollutant removal capacity and stability of aquaporin incorporated biomimetic thin-film composite membranes","authors":"Hilal Yılmaz ,&nbsp;Melek Özkan","doi":"10.1016/j.btre.2022.e00745","DOIUrl":null,"url":null,"abstract":"<div><p>Aquaporin incorporated nanofiltration membranes have high potential for future applications on separation processes. In this study, performance of biomimetic thin-film composite membranes containing <em>Halomonas elongata</em> and <em>Escherichia coli</em> aquaporins with different affinity tags for the removal of micropollutants was investigated.% rejection of the membranes for atrazine, terbutryn, triclosan, and diuron varied between 66.7% and 90.3% depending on the type of aquaporin and micropollutant. The highest removal rate was achieved with a membrane containing <em>H. elongata</em> aquaporin for atrazine and terbutryn which have methyl branching in their structure. Electrostatic interactions between micropollutants, thin-film layer of the membrane, and tags of aquaporins may also play important role in rejection of micropollutants. Stability experiments showed that biomimetic membranes can be used for six months period without a remarkable decrease in% rejection. Membrane used 24 times for atrazine removal for a year period lost most of its ability to repel atrazine.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"35 ","pages":"Article e00745"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9a/8b/main.PMC9204655.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X22000443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 4

Abstract

Aquaporin incorporated nanofiltration membranes have high potential for future applications on separation processes. In this study, performance of biomimetic thin-film composite membranes containing Halomonas elongata and Escherichia coli aquaporins with different affinity tags for the removal of micropollutants was investigated.% rejection of the membranes for atrazine, terbutryn, triclosan, and diuron varied between 66.7% and 90.3% depending on the type of aquaporin and micropollutant. The highest removal rate was achieved with a membrane containing H. elongata aquaporin for atrazine and terbutryn which have methyl branching in their structure. Electrostatic interactions between micropollutants, thin-film layer of the membrane, and tags of aquaporins may also play important role in rejection of micropollutants. Stability experiments showed that biomimetic membranes can be used for six months period without a remarkable decrease in% rejection. Membrane used 24 times for atrazine removal for a year period lost most of its ability to repel atrazine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水通道蛋白掺入仿生薄膜复合膜的微污染物去除能力及稳定性
水通道蛋白掺入纳滤膜在分离过程中具有很大的应用潜力。在本研究中,研究了含有不同亲和标签的细长盐单胞菌和大肠杆菌水通道蛋白的仿生薄膜复合膜对微污染物的去除性能。根据水通道蛋白和微污染物的类型,膜对阿特拉津、特布良、三氯生和迪乌龙的截留率在66.7%至90.3%之间。对结构上具有甲基分支的阿特拉津和特布良的去除率最高的是含有长水孔蛋白的膜。微污染物、膜的薄膜层和水通道蛋白标签之间的静电相互作用也可能在微污染物的排斥中起重要作用。稳定性实验表明,仿生膜可使用6个月,排异率无显著下降。使用24次去除阿特拉津的膜在一年的时间内失去了大部分抵制阿特拉津的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Reports
Biotechnology Reports Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍: Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.
期刊最新文献
Bee products: An overview of sources, biological activities and advanced approaches used in apitherapy application Potential antimicrobial and fruit juice clarification activity of amylase enzyme from Bacillus strains Characterization of host cell proteins in the downstream process of plant-Based biologics using LC-MS profiling Agrowaste-carbon and carbon-based nanocomposites for endocrine disruptive cationic dyes removal: A critical review Interaction and effects of temperature preference under a controlled environment on the diversity and abundance of the microbiome in Lutzomyia longipalpis (Diptera: Psychodidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1