A Perspective for Developing Polymer-Based Electromagnetic Interference Shielding Composites

IF 31.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nano-Micro Letters Pub Date : 2022-04-01 DOI:10.1007/s40820-022-00843-3
Yali Zhang, Junwei Gu
{"title":"A Perspective for Developing Polymer-Based Electromagnetic Interference Shielding Composites","authors":"Yali Zhang,&nbsp;Junwei Gu","doi":"10.1007/s40820-022-00843-3","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid development of aerospace weapons and equipment, wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based electromagnetic interference (EMI) shielding composites. However, most of currently prepared polymer-based EMI shielding composites are still difficult to combine high performance and multi-functionality. In response to this, based on the research works of relevant researchers as well as our research group, three possible directions to break through the above bottlenecks are proposed, including construction of efficient conductive networks, optimization of multi-interfaces for lightweight and multifunction compatibility design. The future development trends in three directions are prospected, and it is hoped to provide certain theoretical basis and technical guidance for the preparation, research and development of polymer-based EMI shielding composites.</p><figure><div><div><div><picture><source><img></source></picture></div></div></div></figure></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":null,"pages":null},"PeriodicalIF":31.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-022-00843-3.pdf","citationCount":"122","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-022-00843-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 122

Abstract

The rapid development of aerospace weapons and equipment, wireless base stations and 5G communication technologies has put forward newer and higher requirements for the comprehensive performances of polymer-based electromagnetic interference (EMI) shielding composites. However, most of currently prepared polymer-based EMI shielding composites are still difficult to combine high performance and multi-functionality. In response to this, based on the research works of relevant researchers as well as our research group, three possible directions to break through the above bottlenecks are proposed, including construction of efficient conductive networks, optimization of multi-interfaces for lightweight and multifunction compatibility design. The future development trends in three directions are prospected, and it is hoped to provide certain theoretical basis and technical guidance for the preparation, research and development of polymer-based EMI shielding composites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚合物基电磁干扰屏蔽复合材料的发展展望
航空航天武器装备、无线基站、5G通信技术的快速发展,对聚合物基电磁干扰屏蔽复合材料的综合性能提出了更新更高的要求。然而,目前制备的大多数聚合物基电磁屏蔽复合材料仍难以将高性能和多功能性结合起来。针对此,结合相关研究人员及本课题组的研究工作,提出了突破上述瓶颈的三个可能方向:构建高效导电网络、优化多接口实现轻量化和多功能兼容设计。展望了未来三个方向的发展趋势,希望为聚合物基EMI屏蔽复合材料的制备、研究和开发提供一定的理论依据和技术指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
42.40
自引率
4.90%
发文量
715
审稿时长
13 weeks
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.
期刊最新文献
Patterning of Metal Halide Perovskite Thin Films and Functional Layers for Optoelectronic Applications Long-Chain Gemini Surfactant-Assisted Blade Coating Enables Large-Area Carbon-Based Perovskite Solar Modules with Record Performance Ultrafine Vacancy-Rich Nb2O5 Semiconductors Confined in Carbon Nanosheets Boost Dielectric Polarization for High-Attenuation Microwave Absorption Elucidating Ion Transport Phenomena in Sulfide/Polymer Composite Electrolytes for Practical Solid-State Batteries Superelastic Radiative Cooling Metafabric for Comfortable Epidermal Electrophysiological Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1