首页 > 最新文献

Nano-Micro Letters最新文献

英文 中文
Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding 用于高性能电磁干扰屏蔽的MXene基宏观结构的多种结构设计策略。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-02 DOI: 10.1007/s40820-023-01203-5
Yue Liu, Yadi Wang, Na Wu, Mingrui Han, Wei Liu, Jiurong Liu, Zhihui Zeng

Highlights

  • MXene-based macrostructure development and EMI shielding mechanisms are reviewed.

  • Various structural design strategies for MXene-based EMI shielding materials are highlighted and discussed.

  • Current challenges and future directions for MXenes in electromagnetic interference shielding are outlined.

迫切需要柔性、轻质、机械坚固、优异的电磁干扰(EMI)屏蔽材料。二维(2D)过渡金属碳化物/氮化物(MXenes)由于其良好的导电性、良好的机械性质(如柔性)、大的纵横比和在水介质中的简单加工性,已成为构建优异EMI屏蔽材料的潜在候选者。MXenes用于EMI屏蔽的适用性已得到深入探讨;因此,回顾相关研究有利于推进高性能MXene基EMI屏蔽的设计。本文综述了基于MXene的宏观结构开发的最新进展,包括相关的EMI屏蔽机制。特别是,重点介绍和探索了MXene基EMI屏蔽材料的各种结构设计策略。最后,提出了MXene基EMI屏蔽材料未来发展的难点和看法。本综述旨在在合理的结构设计和MXene未来高效利用的基础上,推动高性能MXene基EMI屏蔽宏观结构的发展。
{"title":"Diverse Structural Design Strategies of MXene-Based Macrostructure for High-Performance Electromagnetic Interference Shielding","authors":"Yue Liu,&nbsp;Yadi Wang,&nbsp;Na Wu,&nbsp;Mingrui Han,&nbsp;Wei Liu,&nbsp;Jiurong Liu,&nbsp;Zhihui Zeng","doi":"10.1007/s40820-023-01203-5","DOIUrl":"10.1007/s40820-023-01203-5","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>MXene-based macrostructure development and EMI shielding mechanisms are reviewed.</p>\u0000 </li>\u0000 <li>\u0000 <p>Various structural design strategies for MXene-based EMI shielding materials are highlighted and discussed.</p>\u0000 </li>\u0000 <li>\u0000 <p>Current challenges and future directions for MXenes in electromagnetic interference shielding are outlined.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622396/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71419481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green-Solvent Processed Blade-Coating Organic Solar Cells with an Efficiency Approaching 19% Enabled by Alkyl-Tailored Acceptors 烷基定制受体使绿色溶剂处理的叶片涂层有机太阳能电池的效率接近19%。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-11-02 DOI: 10.1007/s40820-023-01208-0
Hairui Bai, Ruijie Ma, Wenyan Su, Top Archie Dela Peña, Tengfei Li, Lingxiao Tang, Jie Yang, Bin Hu, Yilin Wang, Zhaozhao Bi, Yueling Su, Qi Wei, Qiang Wu, Yuwei Duan, Yuxiang Li, Jiaying Wu, Zicheng Ding, Xunfan Liao, Yinjuan Huang, Chao Gao, Guanghao Lu, Mingjie Li, Weiguo Zhu, Gang Li, Qunping Fan, Wei Ma

Highlights

  • Alkyl-tailored Y-SMAs named YR-SeNF series with near-infrared absorption, different molecular crystallinity and self-assembly abilities are developed.

  • The related organic solar cells (OSCs) with an active layer processed from halogen-free solvents and spin-coating-free technologies achieve a ~ 19% efficiency.

  • Ternary OSCs offer a robust operating stability under MPP tracking and well-keep > 80% of the initial efficiency for even over 400 h.

实验室中有机太阳能电池(OSC)的功率转换效率(PCE)已达到19%以上,通常通过使用有毒卤化溶剂的旋涂技术进行处理。然而,当使用刮刀涂层和/或用于大规模印刷的绿色溶剂时,通常会出现显著的PCE下降,这阻碍了OSC的实际开发。在这里,通过结合硒融合的中心核和萘融合的端基,开发了一系列新的N-烷基定制的小分子受体,命名为YR-SeNF,具有相同的分子主链。得益于N-烷基工程,近红外吸收YR-SeNF系列显示出不同的结晶度、堆积模式以及与聚合物供体的混溶性。研究表明,通过引入新设计的与定制的N-烷基链相关的客体受体,活性层形态的分子堆积、结晶度和垂直分布得到了很好的优化,为基于PM6:L8-BO:YR-SeNF的OSCs提供了改进的电荷转移动力学和稳定性。结果,在由具有高沸点的绿色溶剂邻二甲苯制造的刮刀涂层OSC中实现了接近19%的创纪录的高PCE。值得注意的是,三元OSC在最大功率点跟踪和良好保持下提供了强大的操作稳定性 > 80%的初始PCE持续甚至超过400小时。我们的烷基定制客户受体策略为开发绿色溶剂和叶片涂层加工的高效稳定的OSC提供了一种独特的方法,为工业发展铺平了道路。
{"title":"Green-Solvent Processed Blade-Coating Organic Solar Cells with an Efficiency Approaching 19% Enabled by Alkyl-Tailored Acceptors","authors":"Hairui Bai,&nbsp;Ruijie Ma,&nbsp;Wenyan Su,&nbsp;Top Archie Dela Peña,&nbsp;Tengfei Li,&nbsp;Lingxiao Tang,&nbsp;Jie Yang,&nbsp;Bin Hu,&nbsp;Yilin Wang,&nbsp;Zhaozhao Bi,&nbsp;Yueling Su,&nbsp;Qi Wei,&nbsp;Qiang Wu,&nbsp;Yuwei Duan,&nbsp;Yuxiang Li,&nbsp;Jiaying Wu,&nbsp;Zicheng Ding,&nbsp;Xunfan Liao,&nbsp;Yinjuan Huang,&nbsp;Chao Gao,&nbsp;Guanghao Lu,&nbsp;Mingjie Li,&nbsp;Weiguo Zhu,&nbsp;Gang Li,&nbsp;Qunping Fan,&nbsp;Wei Ma","doi":"10.1007/s40820-023-01208-0","DOIUrl":"10.1007/s40820-023-01208-0","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Alkyl-tailored Y-SMAs named YR-SeNF series with near-infrared absorption, different molecular crystallinity and self-assembly abilities are developed.</p>\u0000 </li>\u0000 <li>\u0000 <p>The related organic solar cells (OSCs) with an active layer processed from halogen-free solvents and spin-coating-free technologies achieve a ~ 19% efficiency.</p>\u0000 </li>\u0000 <li>\u0000 <p>Ternary OSCs offer a robust operating stability under MPP tracking and well-keep &gt; 80% of the initial efficiency for even over 400 h.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10622389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71419482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds 智能血管化3D/4D/5D/6D打印组织支架。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-31 DOI: 10.1007/s40820-023-01187-2
Xiaoyu Han, Qimanguli Saiding, Xiaolu Cai, Yi Xiao, Peng Wang, Zhengwei Cai, Xuan Gong, Weiming Gong, Xingcai Zhang, Wenguo Cui

Highlights

  • Comprehensive and systematic discussion of vascularized additive manufacturing scaffolds for bone tissue repair is provided.

  • The development mechanism of blood vessels and the relationship between bone tissue engineering and blood vessels are discussed.

  • Vascularized additively manufactured scaffolds in tissue repair are discussed in terms of issues, opportunities, and challenges.

  • Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds are discussed.

血管对输送营养和氧气以及清除废物至关重要。具有功能性血管网络的支架修复材料在骨组织工程中有着广泛的应用。增材制造是一种通过将物质层层堆叠来制造三维固体的制造技术,主要包括但不限于3D打印,也包括4D打印、5D打印和6D打印。通过精确调整智能血管支架的机械结构和生物性能,它可以与血管化有效结合,以满足血管化组织支架的需求。在此,根据血管化对组织的重要性,系统地讨论了从新生血管到血管化对骨组织工程的发展。此外,重点介绍了血管化3D打印支架材料的研究进展和未来前景,分为四类:功能性血管化3D打印机构架、基于细胞的血管化3D相机构架、负载特定载体的血管化三维相机构架和仿生血管化3D机构架。最后,简要回顾了血管组织工程、心血管系统、骨骼肌、软组织等相关组织中的血管化增材制造组织支架,并讨论了在智能血管化组织再生方面取得重大进展的挑战和发展努力。
{"title":"Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds","authors":"Xiaoyu Han,&nbsp;Qimanguli Saiding,&nbsp;Xiaolu Cai,&nbsp;Yi Xiao,&nbsp;Peng Wang,&nbsp;Zhengwei Cai,&nbsp;Xuan Gong,&nbsp;Weiming Gong,&nbsp;Xingcai Zhang,&nbsp;Wenguo Cui","doi":"10.1007/s40820-023-01187-2","DOIUrl":"10.1007/s40820-023-01187-2","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Comprehensive and systematic discussion of vascularized additive manufacturing scaffolds for bone tissue repair is provided.</p>\u0000 </li>\u0000 <li>\u0000 <p>The development mechanism of blood vessels and the relationship between bone tissue engineering and blood vessels are discussed.</p>\u0000 </li>\u0000 <li>\u0000 <p>Vascularized additively manufactured scaffolds in tissue repair are discussed in terms of issues, opportunities, and challenges.</p>\u0000 </li>\u0000 <li>\u0000 <p>Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds are discussed.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10618155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71419483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries 用于高生物安全性锌离子电池的异质核生长稳定锌阳极。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-26 DOI: 10.1007/s40820-023-01206-2
Jingjing Li, Zhexuan Liu, Shaohua Han, Peng Zhou, Bingan Lu, Jianda Zhou, Zhiyuan Zeng, Zhizhao Chen, Jiang Zhou

Highlights

  • Animal models are applied to evaluate the biosecurity and biocompatibility of the zinc-ion batteries with the electrolytes of different zinc salts.

  • Leakage scene simulations and histological analysis are employed in investigating the tissue response after battery implantations, in which ZnSO4 exhibits higher biosecurity.

  • Sn hetero nucleus is introduced to stabilize the zinc anode, which not only facilitates the planar zinc deposition, but also contributes to higher hydrogen evolution overpotential.

生物相容性器件以可穿戴和植入式器件的形式广泛应用于现代生活和医疗领域,对电池的生物相容性、高安全性、低成本和优异的电化学性能提出了更高的要求,成为开发可行的生物相容电池的评价标准。本文通过在新西兰兔身上进行电池植入试验和泄漏场景模拟,证明硫酸锌电解质具有较高的生物安全性,是生物相容性锌离子电池(ZIBs)的理想锌盐之一。此外,为了缓解弱酸性电解质中臭名昭著的枝晶生长和析氢现象,并提高其操作稳定性,引入Sn杂核来稳定锌阳极,这不仅有利于平面锌沉积,而且有助于提高析氢过电位。最后,对称电池的长寿命为1500小时,Zn-MnO2电池在0.5A g-1下的比容量为150mAh g-1,Zn-NH4V4O10电池在5A g-1下获得212mAh g-1。这项工作可能为生物相容性ZIB的细胞成分的生物安全性提供独特的视角。
{"title":"Hetero Nucleus Growth Stabilizing Zinc Anode for High-Biosecurity Zinc-Ion Batteries","authors":"Jingjing Li,&nbsp;Zhexuan Liu,&nbsp;Shaohua Han,&nbsp;Peng Zhou,&nbsp;Bingan Lu,&nbsp;Jianda Zhou,&nbsp;Zhiyuan Zeng,&nbsp;Zhizhao Chen,&nbsp;Jiang Zhou","doi":"10.1007/s40820-023-01206-2","DOIUrl":"10.1007/s40820-023-01206-2","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>Animal models are applied to evaluate the biosecurity and biocompatibility of the zinc-ion batteries with the electrolytes of different zinc salts.</p>\u0000 </li>\u0000 <li>\u0000 <p>Leakage scene simulations and histological analysis are employed in investigating the tissue response after battery implantations, in which ZnSO<sub>4</sub> exhibits higher biosecurity.</p>\u0000 </li>\u0000 <li>\u0000 <p>Sn hetero nucleus is introduced to stabilize the zinc anode, which not only facilitates the planar zinc deposition, but also contributes to higher hydrogen evolution overpotential.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50160292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio 原子铜位工程实现了高CH4/C2H4比率的高效CO2电还原为甲烷。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-26 DOI: 10.1007/s40820-023-01188-1
Minhan Li, Fangzhou Zhang, Min Kuang, Yuanyuan Ma, Ting Liao, Ziqi Sun, Wei Luo, Wan Jiang, Jianping Yang

Electrochemical reduction of CO2 into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO2 capture and utilization, resulting from their high catalytic activity and selectivity. The mobility and accessibility of active sites in Cu-based catalysts significantly hinder the development of efficient Cu-based catalysts for CO2 electrochemical reduction reaction (CO2RR). Herein, a facile and effective strategy is developed to engineer accessible and structural stable Cu sites by incorporating single atomic Cu into the nitrogen cavities of the host graphitic carbon nitride (g-C3N4) as the active sites for CO2-to-CH4 conversion in CO2RR. By regulating the coordination and density of Cu sites in g-C3N4, an optimal catalyst corresponding to a one Cu atom in one nitrogen cavity reaches the highest CH4 Faraday efficiency of 49.04% and produces the products with a high CH4/C2H4 ratio over 9. This work provides the first experimental study on g-C3N4-supported single Cu atom catalyst for efficient CH4 production from CO2RR and suggests a principle in designing highly stable and selective high-efficiency Cu-based catalysts for CO2RR by engineering Cu active sites in 2D materials with porous crystal structures.

使用铜基催化剂将CO2电化学还原为高价值的碳氢化合物和醇类是一种很有前途和吸引力的CO2捕获和利用技术,因为它们具有很高的催化活性和选择性。铜基催化剂中活性位点的移动性和可及性严重阻碍了用于CO2电化学还原反应(CO2RR)的高效铜基催化剂的开发。本文开发了一种简单有效的策略,通过将单原子Cu掺入主体石墨氮化碳(g-C3N4)的氮腔中,作为CO2RR中CO2转化为CH4的活性位点,来设计可获得的和结构稳定的Cu位点。通过调节g-C3N4中Cu位点的配位和密度,对应于一个氮腔中一个Cu原子的最佳催化剂达到了49.04%的最高CH4法拉第效率,并产生了CH4/C2H4比超过9的产物。本工作首次对g-C3N4负载的单铜原子催化剂进行了实验研究,用于从CO2RR中高效生产CH4,并提出了通过在具有多孔晶体结构的2D材料中设计Cu活性位点来设计高稳定性和选择性的高效铜基CO2RR催化剂的原理。
{"title":"Atomic Cu Sites Engineering Enables Efficient CO2 Electroreduction to Methane with High CH4/C2H4 Ratio","authors":"Minhan Li,&nbsp;Fangzhou Zhang,&nbsp;Min Kuang,&nbsp;Yuanyuan Ma,&nbsp;Ting Liao,&nbsp;Ziqi Sun,&nbsp;Wei Luo,&nbsp;Wan Jiang,&nbsp;Jianping Yang","doi":"10.1007/s40820-023-01188-1","DOIUrl":"10.1007/s40820-023-01188-1","url":null,"abstract":"<div><p>Electrochemical reduction of CO<sub>2</sub> into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO<sub>2</sub> capture and utilization, resulting from their high catalytic activity and selectivity. The mobility and accessibility of active sites in Cu-based catalysts significantly hinder the development of efficient Cu-based catalysts for CO<sub>2</sub> electrochemical reduction reaction (CO<sub>2</sub>RR). Herein, a facile and effective strategy is developed to engineer accessible and structural stable Cu sites by incorporating single atomic Cu into the nitrogen cavities of the host graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) as the active sites for CO<sub>2</sub>-to-CH<sub>4</sub> conversion in CO<sub>2</sub>RR. By regulating the coordination and density of Cu sites in g-C<sub>3</sub>N<sub>4</sub>, an optimal catalyst corresponding to a one Cu atom in one nitrogen cavity reaches the highest CH<sub>4</sub> Faraday efficiency of 49.04% and produces the products with a high CH<sub>4</sub>/C<sub>2</sub>H<sub>4</sub> ratio over 9. This work provides the first experimental study on g-C<sub>3</sub>N<sub>4</sub>-supported single Cu atom catalyst for efficient CH<sub>4</sub> production from CO<sub>2</sub>RR and suggests a principle in designing highly stable and selective high-efficiency Cu-based catalysts for CO<sub>2</sub>RR by engineering Cu active sites in 2D materials with porous crystal structures.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50160243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Demystifying the Salt-Induced Li Loss: A Universal Procedure for the Electrolyte Design of Lithium-Metal Batteries 揭开盐引起的锂损失的神秘面纱:锂金属电池电解质设计的通用程序。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-24 DOI: 10.1007/s40820-023-01205-3
Zhenglu Zhu, Xiaohui Li, Xiaoqun Qi, Jie Ji, Yongsheng Ji, Ruining Jiang, Chaofan Liang, Dan Yang, Ze Yang, Long Qie, Yunhui Huang

Lithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF6), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) as examples, we decouple the irreversible Li loss (SEI Li+ and “dead” Li) during cycling. It is found that the accumulation of both SEI Li+ and “dead” Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF6 salt. While for the electrolytes with LiDFOB and LiFSI salts, the accumulation of “dead” Li predominates the Li loss. We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could, respectively, function as the “dead” Li and SEI Li+ inhibitors. Inspired by the above understandings, we propose a universal procedure for the electrolyte design of Li metal batteries (LMBs): (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive. With such a Li-loss-targeted strategy, the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane, triethyl phosphate, and tetrahydrofuran solvents. Our strategy may broaden the scope of electrolyte design toward practical LMBs.

锂(Li)金属电极在具有不同盐的电解质中显示出显著不同的可逆性。然而,目前尚不清楚盐类对李流失的影响。在此,以具有不同盐的电解质(例如,六氟磷酸锂(LiPF6)、二氟(草酸)硼酸锂(LiDFOB)和双(氟磺酰基)酰胺锂(LiFSI))为例,我们在循环过程中解耦了不可逆的Li损失(SEI-Li+和“死”Li)。研究发现,SEI-Li+和“死”Li的积累可能是锂金属在含LiPF6盐的电解质中不可逆的Li损失的原因。而对于含有LiDFOB和LiFSI盐的电解质,“死”Li的积累主导了Li的损失。我们还证明,硝酸锂和氟碳酸亚乙酯添加剂可以分别作为“死”Li和SEI-Li+抑制剂。受上述理解的启发,我们提出了一个通用的锂金属电池电解液设计程序:(i)解耦并找出不可逆锂损失的主要原因;(ii)添加相应的电解质添加剂。通过这种Li损失靶向策略,在含有1,2-二甲氧基乙烷、磷酸三乙酯和四氢呋喃溶剂的电解质中,Li的可逆性显著增强。我们的策略可能会将电解质设计的范围扩大到实用的LMB。
{"title":"Demystifying the Salt-Induced Li Loss: A Universal Procedure for the Electrolyte Design of Lithium-Metal Batteries","authors":"Zhenglu Zhu,&nbsp;Xiaohui Li,&nbsp;Xiaoqun Qi,&nbsp;Jie Ji,&nbsp;Yongsheng Ji,&nbsp;Ruining Jiang,&nbsp;Chaofan Liang,&nbsp;Dan Yang,&nbsp;Ze Yang,&nbsp;Long Qie,&nbsp;Yunhui Huang","doi":"10.1007/s40820-023-01205-3","DOIUrl":"10.1007/s40820-023-01205-3","url":null,"abstract":"<div><p>Lithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF<sub>6</sub>), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) as examples, we decouple the irreversible Li loss (SEI Li<sup>+</sup> and “dead” Li) during cycling. It is found that the accumulation of both SEI Li<sup>+</sup> and “dead” Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF<sub>6</sub> salt. While for the electrolytes with LiDFOB and LiFSI salts, the accumulation of “dead” Li predominates the Li loss. We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could, respectively, function as the “dead” Li and SEI Li<sup>+</sup> inhibitors. Inspired by the above understandings, we propose a universal procedure for the electrolyte design of Li metal batteries (LMBs): (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive. With such a Li-loss-targeted strategy, the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane, triethyl phosphate, and tetrahydrofuran solvents. Our strategy may broaden the scope of electrolyte design toward practical LMBs. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597960/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment 用于自主细胞识别和富集的生物催化浮力驱动的纳米机器人。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-24 DOI: 10.1007/s40820-023-01207-1
Ziyi Guo, Chenchen Zhuang, Yihang Song, Joel Yong, Yi Li, Zhong Guo, Biao Kong, John M. Whitelock, Joseph Wang, Kang Liang

Autonomously self-propelled nanoswimmers represent the next-generation nano-devices for bio- and environmental technology. However, current nanoswimmers generate limited energy output and can only move in short distances and duration, thus are struggling to be applied in practical challenges, such as living cell transportation. Here, we describe the construction of biodegradable metal–organic framework based nanobots with chemically driven buoyancy to achieve highly efficient, long-distance, directional vertical motion to “find-and-fetch” target cells. Nanobots surface-functionalized with antibodies against the cell surface marker carcinoembryonic antigen are exploited to impart the nanobots with specific cell targeting capacity to recognize and separate cancer cells. We demonstrate that the self-propelled motility of the nanobots can sufficiently transport the recognized cells autonomously, and the separated cells can be easily collected with a customized glass column, and finally regain their full metabolic potential after the separation. The utilization of nanobots with easy synthetic pathway shows considerable promise in cell recognition, separation, and enrichment.

自主推进的纳米游泳运动员代表了用于生物和环境技术的下一代纳米设备。然而,目前的纳米游泳运动员产生的能量输出有限,只能在短距离和短时间内移动,因此难以应用于实际挑战,如活细胞运输。在这里,我们描述了基于可生物降解金属有机框架的纳米机器人的构建,该机器人具有化学驱动的浮力,以实现高效、长距离、定向的垂直运动,从而“找到并提取”目标细胞。利用针对细胞表面标记物癌胚抗原的抗体进行表面功能化的纳米机器人来赋予纳米机器人识别和分离癌症细胞的特异性细胞靶向能力。我们证明,纳米机器人的自推进运动可以充分自主运输识别的细胞,分离的细胞可以很容易地用定制的玻璃柱收集,并最终在分离后恢复其全部代谢潜力。利用具有简单合成途径的纳米机器人在细胞识别、分离和富集方面显示出相当大的前景。
{"title":"Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment","authors":"Ziyi Guo,&nbsp;Chenchen Zhuang,&nbsp;Yihang Song,&nbsp;Joel Yong,&nbsp;Yi Li,&nbsp;Zhong Guo,&nbsp;Biao Kong,&nbsp;John M. Whitelock,&nbsp;Joseph Wang,&nbsp;Kang Liang","doi":"10.1007/s40820-023-01207-1","DOIUrl":"10.1007/s40820-023-01207-1","url":null,"abstract":"<div><p>Autonomously self-propelled nanoswimmers represent the next-generation nano-devices for bio- and environmental technology. However, current nanoswimmers generate limited energy output and can only move in short distances and duration, thus are struggling to be applied in practical challenges, such as living cell transportation. Here, we describe the construction of biodegradable metal–organic framework based nanobots with chemically driven buoyancy to achieve highly efficient, long-distance, directional vertical motion to “find-and-fetch” target cells. Nanobots surface-functionalized with antibodies against the cell surface marker carcinoembryonic antigen are exploited to impart the nanobots with specific cell targeting capacity to recognize and separate cancer cells. We demonstrate that the self-propelled motility of the nanobots can sufficiently transport the recognized cells autonomously, and the separated cells can be easily collected with a customized glass column, and finally regain their full metabolic potential after the separation. The utilization of nanobots with easy synthetic pathway shows considerable promise in cell recognition, separation, and enrichment. </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597912/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Formed Tribofilms as Efficient Organic/Inorganic Hybrid Interlayers for Stabilizing Lithium Metal Anodes 原位形成的摩擦膜作为稳定锂金属阳极的有效有机/无机杂化中间层。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-24 DOI: 10.1007/s40820-023-01210-6
Shaozhen Huang, Kecheng Long, Yuejiao Chen, Tuoya Naren, Piao Qing, Xiaobo Ji, Weifeng Wei, Zhibin Wu, Libao Chen

Highlights

  • The robust organic/inorganic hybrid interlayer derived from in situ formed tribofilms were fabricated by using a scalable rolling method.

  • The interlayer facilitates dendrite-free lithium metal anodes by building local de-solvation environments near the interface and inhibiting both dendrite growth and electrolytes corrosion.

  • The symmetrical cell exhibits a remarkable lifespan of 5,600 h (1.0 mA cm-2 and 1.0 mAh cm-2) and 1,350 cycles even at a harsh condition (18.0 mA cm-2 and 3.0 mAh cm-2).

锂金属阳极的实际应用受到不受控制的枝晶生长和副反应的限制。在此,我们提出了一种新的摩擦诱导策略来生产高性能薄锂阳极(Li@CFO)。通过含氟聚合物润滑脂和Li带材在轧制过程中的原位摩擦反应,在Li金属上形成了坚固的有机/无机杂化中间层(亲锂LiF/LiC6骨架杂化-CF2-O-CF2-链)。衍生的界面通过减轻副反应和降低界面处的溶剂化程度,有助于可逆的Li电镀/剥离行为。这个Li@CFO||Li@CFO即使在苛刻的条件下(18.0mAcm-2和3.0mAh cm-2),对称电池也表现出5600小时(1.0mAhcm-2和1.0mAh cm-2)和1350次循环的显著寿命。当与高负载LiFePO4阴极配对时,全电池在1C下持续450多次循环,高容量保持率为99.9%。这项工作为生产高性能薄LMA提供了一种新的摩擦诱导策略。
{"title":"In Situ Formed Tribofilms as Efficient Organic/Inorganic Hybrid Interlayers for Stabilizing Lithium Metal Anodes","authors":"Shaozhen Huang,&nbsp;Kecheng Long,&nbsp;Yuejiao Chen,&nbsp;Tuoya Naren,&nbsp;Piao Qing,&nbsp;Xiaobo Ji,&nbsp;Weifeng Wei,&nbsp;Zhibin Wu,&nbsp;Libao Chen","doi":"10.1007/s40820-023-01210-6","DOIUrl":"10.1007/s40820-023-01210-6","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 \u0000<ul>\u0000 <li>\u0000 <p>The robust organic/inorganic hybrid interlayer derived from in situ formed tribofilms were fabricated by using a scalable rolling method.</p>\u0000 </li>\u0000 <li>\u0000 <p>The interlayer facilitates dendrite-free lithium metal anodes by building local de-solvation environments near the interface and inhibiting both dendrite growth and electrolytes corrosion.</p>\u0000 </li>\u0000 <li>\u0000 <p>The symmetrical cell exhibits a remarkable lifespan of 5,600 h (1.0 mA cm<sup>-2</sup> and 1.0 mAh cm<sup>-2</sup>) and 1,350 cycles even at a harsh condition (18.0 mA cm<sup>-2</sup> and 3.0 mAh cm<sup>-2</sup>). </p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10597943/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49688279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Broad Range Triboelectric Stiffness Sensor for Variable Inclusions Recognition 一种用于可变夹杂物识别的宽范围摩擦电刚度传感器。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-20 DOI: 10.1007/s40820-023-01201-7
Ziyi Zhao, Zhentan Quan, Huaze Tang, Qinghao Xu, Hongfa Zhao, Zihan Wang, Ziwu Song, Shoujie Li, Ishara Dharmasena, Changsheng Wu, Wenbo Ding

Highlights

  • We propose a broad range triboelectric sensor system employing elastic sponge and shielding layers, which can realize fast stiffness recognition within 1.0 s at a low cost.

  • A novel algorithm is proposed for rapid stiffness identification by extracting signal characteristics, effectively reducing demand of computing resources.

  • The proposed sensor system can identify the multi-layer stiffness structure of objects, enabling effective recognition of variable inclusions in soft objects with an accuracy of 99.7%.

随着人工智能的发展,刚度传感器在各个领域得到了广泛的应用,它们与机器人的集成用于自动触诊也受到了极大的关注。本研究提出了一种基于摩擦电纳米发电机(Stiff TENG)的宽范围自供电刚度传感器,用于软物体检测中的可变夹杂物。Stiff TENG采用堆叠结构,包括氧化铟锡膜、弹性海绵、具有导电油墨电极的氟化乙烯丙烯膜和具有屏蔽层的两个丙烯酸片。通过解耦方法,Stiff TENG在1.0s内实现了对物体的刚度检测。分析了TENG在4mm位移下对不同刚度物体的输出性能和特性。Stiff TENG成功用于检测非均匀刚度结构,能够有效识别软物体中的可变夹杂物,识别准确率达到99.7%。此外,其适应性使其非常适合检测人体内的病理状况,因为病理组织经常表现出内部器官硬度的变化。这项研究突出了TENG的创新应用,从而展示了其在医疗保健应用中的巨大潜力,如根据器官硬度评估病理状况的触诊。
{"title":"A Broad Range Triboelectric Stiffness Sensor for Variable Inclusions Recognition","authors":"Ziyi Zhao,&nbsp;Zhentan Quan,&nbsp;Huaze Tang,&nbsp;Qinghao Xu,&nbsp;Hongfa Zhao,&nbsp;Zihan Wang,&nbsp;Ziwu Song,&nbsp;Shoujie Li,&nbsp;Ishara Dharmasena,&nbsp;Changsheng Wu,&nbsp;Wenbo Ding","doi":"10.1007/s40820-023-01201-7","DOIUrl":"10.1007/s40820-023-01201-7","url":null,"abstract":"<div><h2>Highlights</h2><div>\u0000 \u0000 <ul>\u0000 <li>\u0000 <p>We propose a broad range triboelectric sensor system employing elastic sponge and shielding layers, which can realize fast stiffness recognition within 1.0 s at a low cost.</p>\u0000 </li>\u0000 <li>\u0000 <p>A novel algorithm is proposed for rapid stiffness identification by extracting signal characteristics, effectively reducing demand of computing resources.</p>\u0000 </li>\u0000 <li>\u0000 <p>The proposed sensor system can identify the multi-layer stiffness structure of objects, enabling effective recognition of variable inclusions in soft objects with an accuracy of 99.7%.</p>\u0000 </li>\u0000 </ul>\u0000 </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49673035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering Fe-N4 Electronic Structure with Adjacent Co-N2C2 and Co Nanoclusters on Carbon Nanotubes for Efficient Oxygen Electrocatalysis 在碳纳米管上设计具有相邻Co-N2C2和Co纳米团簇的Fe-N4电子结构以实现有效的氧电催化。
IF 26.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2023-10-20 DOI: 10.1007/s40820-023-01195-2
Mingjie Wu, Xiaohua Yang, Xun Cui, Ning Chen, Lei Du, Mohamed Cherif, Fu-Kuo Chiang, Yuren Wen, Amir Hassanpour, François Vidal, Sasha Omanovic, Yingkui Yang, Shuhui Sun, Gaixia Zhang

Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement. Unlike the previously reported single-atom or dual-atom configurations, we designed a new type of binary-atom catalyst, through engineering Fe-N4 electronic structure with adjacent Co-N2C2 and nitrogen-coordinated Co nanoclusters, as oxygen electrocatalysts. The resultant optimized electronic structure of the Fe-N4 active center favors the binding capability of intermediates and enhances oxygen reduction reaction (ORR) activity in both alkaline and acid conditions. In addition, anchoring M–N–C atomic sites on highly graphitized carbon supports guarantees of efficient charge- and mass-transports, and escorts the high bifunctional catalytic activity of the entire catalyst. Further, through the combination of electrochemical studies and in-situ X-ray absorption spectroscopy analyses, the ORR degradation mechanisms under highly oxidative conditions during oxygen evolution reaction processes were revealed. This work developed a new binary-atom catalyst and systematically investigates the effect of highly oxidative environments on ORR electrochemical behavior. It demonstrates the strategy for facilitating oxygen electrocatalytic activity and stability of the atomically dispersed M–N–C catalysts.

调节原子分散的过渡金属原子催化剂的局部构型是提高氧电催化性能的关键。与先前报道的单原子或双原子构型不同,我们设计了一种新型的二元原子催化剂,通过工程化具有相邻Co-N2C2和氮配位Co纳米团簇的Fe-N4电子结构作为氧电催化剂。由此优化的Fe-N4活性中心的电子结构有利于中间体的结合能力,并增强了在碱性和酸性条件下的氧还原反应(ORR)活性。此外,将M-N-C原子位点锚定在高度石墨化的碳上支持了有效的电荷和质量传输,并为整个催化剂的高双功能催化活性保驾护航。此外,通过电化学研究和原位X射线吸收光谱分析相结合,揭示了析氧反应过程中在高度氧化条件下ORR的降解机制。本工作开发了一种新的二元原子催化剂,并系统地研究了高氧化环境对ORR电化学行为的影响。它展示了促进原子分散的M-N-C催化剂的氧电催化活性和稳定性的策略。
{"title":"Engineering Fe-N4 Electronic Structure with Adjacent Co-N2C2 and Co Nanoclusters on Carbon Nanotubes for Efficient Oxygen Electrocatalysis","authors":"Mingjie Wu,&nbsp;Xiaohua Yang,&nbsp;Xun Cui,&nbsp;Ning Chen,&nbsp;Lei Du,&nbsp;Mohamed Cherif,&nbsp;Fu-Kuo Chiang,&nbsp;Yuren Wen,&nbsp;Amir Hassanpour,&nbsp;François Vidal,&nbsp;Sasha Omanovic,&nbsp;Yingkui Yang,&nbsp;Shuhui Sun,&nbsp;Gaixia Zhang","doi":"10.1007/s40820-023-01195-2","DOIUrl":"10.1007/s40820-023-01195-2","url":null,"abstract":"<div><p>Regulating the local configuration of atomically dispersed transition-metal atom catalysts is the key to oxygen electrocatalysis performance enhancement. Unlike the previously reported single-atom or dual-atom configurations, we designed a new type of binary-atom catalyst, through engineering Fe-N<sub>4</sub> electronic structure with adjacent Co-N<sub>2</sub>C<sub>2</sub> and nitrogen-coordinated Co nanoclusters, as oxygen electrocatalysts. The resultant optimized electronic structure of the Fe-N<sub>4</sub> active center favors the binding capability of intermediates and enhances oxygen reduction reaction (ORR) activity in both alkaline and acid conditions. In addition, anchoring M–N–C atomic sites on highly graphitized carbon supports guarantees of efficient charge- and mass-transports, and escorts the high bifunctional catalytic activity of the entire catalyst. Further, through the combination of electrochemical studies and in-situ X-ray absorption spectroscopy analyses, the ORR degradation mechanisms under highly oxidative conditions during oxygen evolution reaction processes were revealed. This work developed a new binary-atom catalyst and systematically investigates the effect of highly oxidative environments on ORR electrochemical behavior. It demonstrates the strategy for facilitating oxygen electrocatalytic activity and stability of the atomically dispersed M–N–C catalysts.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":26.6,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589168/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49673036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nano-Micro Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1