Shanmuga Sundari Sankaran, Dhanasekaran. R, Binay Kumar, Durairajan. A, Valente M.A., Devaraj Stephen. L
{"title":"Study on growth, optical and dielectric properties of ‘Nd’ DOPED NBT-BT (0.94(Na0.5Bi0.5tio3)-0.06batio3) relaxor ferroelectric single crystals","authors":"Shanmuga Sundari Sankaran, Dhanasekaran. R, Binay Kumar, Durairajan. A, Valente M.A., Devaraj Stephen. L","doi":"10.1007/s10832-022-00282-x","DOIUrl":null,"url":null,"abstract":"<div><p>The present work describes the effect of Neodymium (Nd) in the NBT-BT (0.94Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>-0.06BaTiO<sub>3</sub> (NBT-BT (94/06)) + xNd (x = 0, 0.4, 0.6, 0.8, 1.0 wt%)) crystal grown by flux method. As the concentration of the Nd increases beyond 0.4 wt%, homogeneity of the solution is lost and the multinucleation was observed. Color of the crystal changed from yellow to muddy green and size of the crystals were reduced due to the incorporation of Nd in NBT-BT. Nd completely diffused into the NBT-BT lattice, hence no secondary phase formation was observed in XRD. But the peaks were shifted towards the higher angle side due to the shrinkage of NBT-BT lattice. Optical properties of the crystals are studied using UV–visible and photoluminescence spectra. Except 0.4 wt% of Nd, for all other concentration emission at 1064 nm was observed in the PL spectra. Effect of Nd in dielectric constant and the relaxor properties are discussed in detail.</p></div>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"48 3","pages":"143 - 156"},"PeriodicalIF":1.7000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10832-022-00282-x.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10832-022-00282-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 1
Abstract
The present work describes the effect of Neodymium (Nd) in the NBT-BT (0.94Na0.5Bi0.5TiO3-0.06BaTiO3 (NBT-BT (94/06)) + xNd (x = 0, 0.4, 0.6, 0.8, 1.0 wt%)) crystal grown by flux method. As the concentration of the Nd increases beyond 0.4 wt%, homogeneity of the solution is lost and the multinucleation was observed. Color of the crystal changed from yellow to muddy green and size of the crystals were reduced due to the incorporation of Nd in NBT-BT. Nd completely diffused into the NBT-BT lattice, hence no secondary phase formation was observed in XRD. But the peaks were shifted towards the higher angle side due to the shrinkage of NBT-BT lattice. Optical properties of the crystals are studied using UV–visible and photoluminescence spectra. Except 0.4 wt% of Nd, for all other concentration emission at 1064 nm was observed in the PL spectra. Effect of Nd in dielectric constant and the relaxor properties are discussed in detail.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.