Rick Gussio, Michael J Currens, Dominic A Scudiero, Jeffrey A Smith, Deborah A Lannigan, Robert H Shoemaker, Dan W Zaharevitz, Tam Luong Nguyen
{"title":"RSK2 Binding Models Delineate Key Features for Activity.","authors":"Rick Gussio, Michael J Currens, Dominic A Scudiero, Jeffrey A Smith, Deborah A Lannigan, Robert H Shoemaker, Dan W Zaharevitz, Tam Luong Nguyen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Due to its overexpression and activation in human cancer cells and tissues, an emerging molecular target in cancer therapeutics is p90 ribosomal s6 kinase 2 (RSK2). While a growing number of RSK2 inhibitors have been reported in the literature, only the crystal structure of RSK2 in complex with an AMP analogue provides a structural basis for understanding RSK2 inhibition. To remedy this, we used our fluorescence polarization assay to determine the RSK2 activity for a set of structurally diverse compounds, and followed this by modeling their binding modes in an all-atom, energy refined crystal structure of RSK2. These binding models reveal that Val131 and Leu147 are key interaction sites for potent RSK2 inhibition. This structure-based pharmacophore is an important tool for new lead discovery and refinement.</p>","PeriodicalId":15344,"journal":{"name":"Journal of chemical and pharmaceutical research","volume":"2 5","pages":"587-598"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3094916/pdf/nihms276044.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical and pharmaceutical research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to its overexpression and activation in human cancer cells and tissues, an emerging molecular target in cancer therapeutics is p90 ribosomal s6 kinase 2 (RSK2). While a growing number of RSK2 inhibitors have been reported in the literature, only the crystal structure of RSK2 in complex with an AMP analogue provides a structural basis for understanding RSK2 inhibition. To remedy this, we used our fluorescence polarization assay to determine the RSK2 activity for a set of structurally diverse compounds, and followed this by modeling their binding modes in an all-atom, energy refined crystal structure of RSK2. These binding models reveal that Val131 and Leu147 are key interaction sites for potent RSK2 inhibition. This structure-based pharmacophore is an important tool for new lead discovery and refinement.