{"title":"Long-Term Evolution Experiment with Genetic Programming","authors":"William B. Langdon;Wolfgang Banzhaf","doi":"10.1162/artl_a_00360","DOIUrl":null,"url":null,"abstract":"We evolve floating point Sextic polynomial populations of genetic programming binary trees for up to a million generations. We observe continued innovation but this is limited by tree depth. We suggest that deep expressions are resilient to learning as they disperse information, impeding evolvability, and the adaptation of highly nested organisms, and we argue instead for open complexity. Programs with more than 2,000,000,000 instructions (depth 20,000) are created by crossover. To support unbounded long-term evolution experiments in genetic programming (GP), we use incremental fitness evaluation and both SIMD parallel AVX 512-bit instructions and 16 threads to yield performance equivalent to 1.1 trillion GP operations per second, 1.1 tera GPops, on an Intel Xeon Gold 6136 CPU 3.00GHz server.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"28 2","pages":"173-204"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10302121/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 8
Abstract
We evolve floating point Sextic polynomial populations of genetic programming binary trees for up to a million generations. We observe continued innovation but this is limited by tree depth. We suggest that deep expressions are resilient to learning as they disperse information, impeding evolvability, and the adaptation of highly nested organisms, and we argue instead for open complexity. Programs with more than 2,000,000,000 instructions (depth 20,000) are created by crossover. To support unbounded long-term evolution experiments in genetic programming (GP), we use incremental fitness evaluation and both SIMD parallel AVX 512-bit instructions and 16 threads to yield performance equivalent to 1.1 trillion GP operations per second, 1.1 tera GPops, on an Intel Xeon Gold 6136 CPU 3.00GHz server.
期刊介绍:
Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as:
Artificial chemistry and the origins of life
Self-assembly, growth, and development
Self-replication and self-repair
Systems and synthetic biology
Perception, cognition, and behavior
Embodiment and enactivism
Collective behaviors of swarms
Evolutionary and ecological dynamics
Open-endedness and creativity
Social organization and cultural evolution
Societal and technological implications
Philosophy and aesthetics
Applications to biology, medicine, business, education, or entertainment.