Long-Term Evolution Experiment with Genetic Programming

IF 1.6 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Life Pub Date : 2022-06-28 DOI:10.1162/artl_a_00360
William B. Langdon;Wolfgang Banzhaf
{"title":"Long-Term Evolution Experiment with Genetic Programming","authors":"William B. Langdon;Wolfgang Banzhaf","doi":"10.1162/artl_a_00360","DOIUrl":null,"url":null,"abstract":"We evolve floating point Sextic polynomial populations of genetic programming binary trees for up to a million generations. We observe continued innovation but this is limited by tree depth. We suggest that deep expressions are resilient to learning as they disperse information, impeding evolvability, and the adaptation of highly nested organisms, and we argue instead for open complexity. Programs with more than 2,000,000,000 instructions (depth 20,000) are created by crossover. To support unbounded long-term evolution experiments in genetic programming (GP), we use incremental fitness evaluation and both SIMD parallel AVX 512-bit instructions and 16 threads to yield performance equivalent to 1.1 trillion GP operations per second, 1.1 tera GPops, on an Intel Xeon Gold 6136 CPU 3.00GHz server.","PeriodicalId":55574,"journal":{"name":"Artificial Life","volume":"28 2","pages":"173-204"},"PeriodicalIF":1.6000,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Life","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10302121/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 8

Abstract

We evolve floating point Sextic polynomial populations of genetic programming binary trees for up to a million generations. We observe continued innovation but this is limited by tree depth. We suggest that deep expressions are resilient to learning as they disperse information, impeding evolvability, and the adaptation of highly nested organisms, and we argue instead for open complexity. Programs with more than 2,000,000,000 instructions (depth 20,000) are created by crossover. To support unbounded long-term evolution experiments in genetic programming (GP), we use incremental fitness evaluation and both SIMD parallel AVX 512-bit instructions and 16 threads to yield performance equivalent to 1.1 trillion GP operations per second, 1.1 tera GPops, on an Intel Xeon Gold 6136 CPU 3.00GHz server.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传规划的长期进化实验
我们进化浮点六分多项式种群遗传规划二叉树为多达一百万代。我们观察到持续的创新,但这受到树的深度的限制。我们认为深层表达对学习是有弹性的,因为它们分散了信息,阻碍了高度嵌套生物体的可进化性和适应性,我们主张开放的复杂性。具有超过20亿条指令(深度20,000)的程序是通过交叉创建的。为了支持遗传编程(GP)的无限长期进化实验,我们使用增量适应度评估和SIMD并行AVX 512位指令和16个线程,在Intel Xeon Gold 6136 CPU 3.00GHz服务器上产生相当于每秒1.1万亿GP操作,1.1兆gpop的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Life
Artificial Life 工程技术-计算机:理论方法
CiteScore
4.70
自引率
7.70%
发文量
38
审稿时长
>12 weeks
期刊介绍: Artificial Life, launched in the fall of 1993, has become the unifying forum for the exchange of scientific information on the study of artificial systems that exhibit the behavioral characteristics of natural living systems, through the synthesis or simulation using computational (software), robotic (hardware), and/or physicochemical (wetware) means. Each issue features cutting-edge research on artificial life that advances the state-of-the-art of our knowledge about various aspects of living systems such as: Artificial chemistry and the origins of life Self-assembly, growth, and development Self-replication and self-repair Systems and synthetic biology Perception, cognition, and behavior Embodiment and enactivism Collective behaviors of swarms Evolutionary and ecological dynamics Open-endedness and creativity Social organization and cultural evolution Societal and technological implications Philosophy and aesthetics Applications to biology, medicine, business, education, or entertainment.
期刊最新文献
Complexity, Artificial Life, and Artificial Intelligence. Neurons as Autoencoders. Evolvability in Artificial Development of Large, Complex Structures and the Principle of Terminal Addition. Investigating the Limits of Familiarity-Based Navigation. Network Bottlenecks and Task Structure Control the Evolution of Interpretable Learning Rules in a Foraging Agent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1