{"title":"Nonlinear modelling and parameter influence of supercritical transmission shaft with dry friction damper","authors":"Dan Wang, Liyao Song, Peng Cao, Rupeng Zhu","doi":"10.1007/s10999-022-09625-6","DOIUrl":null,"url":null,"abstract":"<div><p>Supercritical transmission shafts, which have one or more critical speeds below their working speeds, are becoming more popular in new rotorcraft designs. To attenuate the excessive transcritical vibration, dry friction damper is a prevailing choice. In this paper, we focus on the basic working mechanism and parameter influence of the dry friction damper for supercritical transmission shaft. Mathematical model of the dry friction damper, which fully considers the nonlinear rub-impact and side-dry-friction effects, is proposed and integrated with finite element model of the transmission shaft to investigate nonlinear interactions between the shaft and damper. It is demonstrated through systematic numerical simulations that a typical transcritical response with dry friction damper can be divided into 4 sub-regions and the dry friction damper takes effect only within region II and III respectively through hard-stopping and side-dry-friction effects. In addition, effects of nonlinear bearing force, transcritical acceleration and initial location of the damper are discussed in detail. Moreover, influences of 3 key damper parameters, that is the rub-impact clearance, the critical slip force and the circumferential friction coefficient, are further investigated, which provides a guidance for designs of the dry friction damper. Finally, prototypes of the dry friction damper are designed, manufactured and tested on a rotor dynamics test rig. For the first time, the theoretical analysis and numerical simulation results are quantitatively verified by an experiment.\n</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 1","pages":"223 - 240"},"PeriodicalIF":2.7000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10999-022-09625-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-022-09625-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Supercritical transmission shafts, which have one or more critical speeds below their working speeds, are becoming more popular in new rotorcraft designs. To attenuate the excessive transcritical vibration, dry friction damper is a prevailing choice. In this paper, we focus on the basic working mechanism and parameter influence of the dry friction damper for supercritical transmission shaft. Mathematical model of the dry friction damper, which fully considers the nonlinear rub-impact and side-dry-friction effects, is proposed and integrated with finite element model of the transmission shaft to investigate nonlinear interactions between the shaft and damper. It is demonstrated through systematic numerical simulations that a typical transcritical response with dry friction damper can be divided into 4 sub-regions and the dry friction damper takes effect only within region II and III respectively through hard-stopping and side-dry-friction effects. In addition, effects of nonlinear bearing force, transcritical acceleration and initial location of the damper are discussed in detail. Moreover, influences of 3 key damper parameters, that is the rub-impact clearance, the critical slip force and the circumferential friction coefficient, are further investigated, which provides a guidance for designs of the dry friction damper. Finally, prototypes of the dry friction damper are designed, manufactured and tested on a rotor dynamics test rig. For the first time, the theoretical analysis and numerical simulation results are quantitatively verified by an experiment.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.