Meta-Analysis for Sociology - A Measure-Driven Approach.

David J Roelfs, Eran Shor, Louise Falzon, Karina W Davidson, Joseph E Schwartz
{"title":"Meta-Analysis for Sociology - A Measure-Driven Approach.","authors":"David J Roelfs,&nbsp;Eran Shor,&nbsp;Louise Falzon,&nbsp;Karina W Davidson,&nbsp;Joseph E Schwartz","doi":"10.1177/0759106312465554","DOIUrl":null,"url":null,"abstract":"<p><p>Meta-analytic methods are becoming increasingly important in sociological research. In this article we present an approach for meta-analysis which is especially helpful for sociologists. Conventional approaches to meta-analysis often prioritize \"concept-driven\" literature searches. However, in disciplines with high theoretical diversity, such as sociology, this search approach might constrain the researcher's ability to fully exploit the entire body of relevant work. We explicate a \"measure-driven\" approach, in which iterative searches and new computerized search techniques are used to increase the range of publications found (and thus the range of possible analyses) and to traverse time and disciplinary boundaries. We demonstrate this measure-driven search approach with two meta-analytic projects, examining the effects of various social variables on all-cause mortality.</p>","PeriodicalId":38437,"journal":{"name":"BMS-Bulletin of Sociological Methodology-Bulletin de Methodologie Sociologique","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0759106312465554","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMS-Bulletin of Sociological Methodology-Bulletin de Methodologie Sociologique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0759106312465554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIOLOGY","Score":null,"Total":0}
引用次数: 13

Abstract

Meta-analytic methods are becoming increasingly important in sociological research. In this article we present an approach for meta-analysis which is especially helpful for sociologists. Conventional approaches to meta-analysis often prioritize "concept-driven" literature searches. However, in disciplines with high theoretical diversity, such as sociology, this search approach might constrain the researcher's ability to fully exploit the entire body of relevant work. We explicate a "measure-driven" approach, in which iterative searches and new computerized search techniques are used to increase the range of publications found (and thus the range of possible analyses) and to traverse time and disciplinary boundaries. We demonstrate this measure-driven search approach with two meta-analytic projects, examining the effects of various social variables on all-cause mortality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社会学的元分析-测量驱动的方法。
元分析方法在社会学研究中变得越来越重要。在本文中,我们提出了一种对社会学家特别有帮助的元分析方法。传统的元分析方法通常优先考虑“概念驱动”的文献搜索。然而,在具有高度理论多样性的学科中,如社会学,这种搜索方法可能会限制研究人员充分利用整个相关工作的能力。我们解释了一种“度量驱动”的方法,在这种方法中,迭代搜索和新的计算机化搜索技术被用来增加发现的出版物的范围(从而增加可能分析的范围),并跨越时间和学科界限。我们通过两个荟萃分析项目证明了这种测量驱动的搜索方法,检查了各种社会变量对全因死亡率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
27
期刊最新文献
Where it turns out that the method does not break the glass ceiling… Comment les citoyens et les citoyennes s’informent ? Retour sur un dispositif d’enquête original à partir d’entretiens de couple Un exemple de combinaison de méthodes. Les enquêtes (Cevipof) sur « Les perceptions de la probité publique » Experimenting with experiments: a ‘Shandean’ approach The interplay of incentives and mode-choice design in self-administered mixed-mode surveys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1