Björn M. von Reumont , Sebastien Dutertre , Ivan Koludarov
{"title":"Venom profile of the European carpenter bee Xylocopa violacea: Evolutionary and applied considerations on its toxin components","authors":"Björn M. von Reumont , Sebastien Dutertre , Ivan Koludarov","doi":"10.1016/j.toxcx.2022.100117","DOIUrl":null,"url":null,"abstract":"<div><p>Modern venomics is increasing its focus on hymenopterans such as honeybees, bumblebees, parasitoid wasps, ants and true wasps. However solitary bees remain understudied in comparison and the few available venom studies focus on short melittin-like sequences and antimicrobial peptides. Herein we describe the first comprehensive venom profile of a solitary bee, the violet carpenter bee <em>Xylocopa violacea</em>, by using proteo-transcriptomics. We reveal a diverse and complex venom profile with 43 different protein families identified from dissected venom gland extracts of which 32 are also detected in the defensively injected venom. Melittin and apamin are the most highly secreted components, followed by Phospholipase A2, Icarapin, Secapin and three novel components. Other components, including eight novel protein families, are rather lowly expressed. We further identify multiple forms of apamin-like peptides. The melittin-like sequences of solitary bees separate into two clades, one comprised most sequences from solitary bees including xylopin (the variant in <em>Xylocopa</em>), while sequences from <em>Lasioglossa</em> appear closer related to melittin-like peptides from <em>Bombus</em> (Bombolittins). Our study suggests that more proteo-transcriptomic data from other solitary bees should be complemented with corresponding genome data to fully understand the evolution and complexity of bee venom proteins, and is of a particular need to disentangle the ambiguous phylogenetic relations of short peptides.</p></div>","PeriodicalId":37124,"journal":{"name":"Toxicon: X","volume":"14 ","pages":"Article 100117"},"PeriodicalIF":3.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8927852/pdf/","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590171022000273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
Modern venomics is increasing its focus on hymenopterans such as honeybees, bumblebees, parasitoid wasps, ants and true wasps. However solitary bees remain understudied in comparison and the few available venom studies focus on short melittin-like sequences and antimicrobial peptides. Herein we describe the first comprehensive venom profile of a solitary bee, the violet carpenter bee Xylocopa violacea, by using proteo-transcriptomics. We reveal a diverse and complex venom profile with 43 different protein families identified from dissected venom gland extracts of which 32 are also detected in the defensively injected venom. Melittin and apamin are the most highly secreted components, followed by Phospholipase A2, Icarapin, Secapin and three novel components. Other components, including eight novel protein families, are rather lowly expressed. We further identify multiple forms of apamin-like peptides. The melittin-like sequences of solitary bees separate into two clades, one comprised most sequences from solitary bees including xylopin (the variant in Xylocopa), while sequences from Lasioglossa appear closer related to melittin-like peptides from Bombus (Bombolittins). Our study suggests that more proteo-transcriptomic data from other solitary bees should be complemented with corresponding genome data to fully understand the evolution and complexity of bee venom proteins, and is of a particular need to disentangle the ambiguous phylogenetic relations of short peptides.