William Chiappim, Mariana Amorim Fraga, Humber Furlan, David César Ardiles, Rodrigo Sávio Pessoa
{"title":"The status and perspectives of nanostructured materials and fabrication processes for wearable piezoresistive sensors.","authors":"William Chiappim, Mariana Amorim Fraga, Humber Furlan, David César Ardiles, Rodrigo Sávio Pessoa","doi":"10.1007/s00542-022-05269-w","DOIUrl":null,"url":null,"abstract":"<p><p>The wearable sensors have attracted a growing interest in different markets, including health, fitness, gaming, and entertainment, due to their outstanding characteristics of convenience, simplicity, accuracy, speed, and competitive price. The development of different types of wearable sensors was only possible due to advances in smart nanostructured materials with properties to detect changes in temperature, touch, pressure, movement, and humidity. Among the various sensing nanomaterials used in wearable sensors, the piezoresistive type has been extensively investigated and their potential have been demonstrated for different applications. In this review article, the current status and challenges of nanomaterials and fabrication processes for wearable piezoresistive sensors are presented in three parts. The first part focuses on the different types of sensing nanomaterials, namely, zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) piezoresistive nanomaterials. Then, in second part, their fabrication processes and integration are discussed. Finally, the last part presents examples of wearable piezoresistive sensors and their applications.</p>","PeriodicalId":49813,"journal":{"name":"Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems","volume":"28 7","pages":"1561-1580"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8926892/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00542-022-05269-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 7
Abstract
The wearable sensors have attracted a growing interest in different markets, including health, fitness, gaming, and entertainment, due to their outstanding characteristics of convenience, simplicity, accuracy, speed, and competitive price. The development of different types of wearable sensors was only possible due to advances in smart nanostructured materials with properties to detect changes in temperature, touch, pressure, movement, and humidity. Among the various sensing nanomaterials used in wearable sensors, the piezoresistive type has been extensively investigated and their potential have been demonstrated for different applications. In this review article, the current status and challenges of nanomaterials and fabrication processes for wearable piezoresistive sensors are presented in three parts. The first part focuses on the different types of sensing nanomaterials, namely, zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) piezoresistive nanomaterials. Then, in second part, their fabrication processes and integration are discussed. Finally, the last part presents examples of wearable piezoresistive sensors and their applications.
期刊介绍:
"Microsystem Technologies - Micro- and Nanosystems. Information Storage and Processing Systems" is intended to provide rapid publication of important and timely results on electromechanical, materials science, design, and manufacturing issues of these systems and their components.
The MEMS/NEMS (Micro/NanoElectroMechanical Systems) area includes sensor, actuators and other micro/nanosystems, and micromechatronic systems integration.
Information storage systems include magnetic recording, optical recording, and other recording devices, e.g., rigid disk, flexible disk, tape and card drives. Processing systems include copiers, printers, scanners and digital cameras.
All contributions are of international archival quality. These are refereed by MST editors and their reviewers by rigorous journal standards. The journal covers a wide range of interdisciplinary technical areas. It brings together and cross-links the knowledge, experience, and capabilities of academic and industrial specialists in many fields. Finally, it contributes to the economically and ecologically sound production of reliable, high-performance MEMS and information storage & processing systems.