Changes in Blood Lipid Levels After a Digitally Enabled Cardiometabolic Preventive Health Program: Pre-Post Study in an Adult Dutch General Population Cohort.
José Castela Forte, Rahul Gannamani, Pytrik Folkertsma, Sridhar Kumaraswamy, Sarah Mount, Sipko van Dam, Jan Hoogsteen
{"title":"Changes in Blood Lipid Levels After a Digitally Enabled Cardiometabolic Preventive Health Program: Pre-Post Study in an Adult Dutch General Population Cohort.","authors":"José Castela Forte, Rahul Gannamani, Pytrik Folkertsma, Sridhar Kumaraswamy, Sarah Mount, Sipko van Dam, Jan Hoogsteen","doi":"10.2196/34946","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite widespread education, many individuals fail to follow basic health behaviors such as consuming a healthy diet and exercising. Positive changes in lifestyle habits are associated with improvements in multiple cardiometabolic health risk factors, including lipid levels. Digital lifestyle interventions have been suggested as a viable complement or potential alternative to conventional health behavior change strategies. However, the benefit of digital preventive interventions for lipid levels in a preventive health context remains unclear.</p><p><strong>Objective: </strong>This observational study aimed to determine how the levels of lipids, namely total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, non-HDL cholesterol, and triglycerides, changed over time in a Dutch general population cohort undergoing a digital preventive health program. Moreover, we looked to establish associations between lifestyle factors at baseline and lipid levels.</p><p><strong>Methods: </strong>We included 348 adults from the Dutch general population who underwent a digitally enabled preventive health program at Ancora Health between January 2020 and October 2021. Upon enrollment, participants underwent a baseline assessment involving a comprehensive lifestyle questionnaire, a blood biochemistry panel, physical measurements, and cardiopulmonary fitness measurements. Thereafter, users underwent a lifestyle coaching program and could access the digital application to register and track health behaviors, weight, and anthropometric data at any time. Lipid levels were categorized as normal, elevated, high, and clinical dyslipidemia according to accepted international standards. If at least one lipid marker was high or HDL was low, participants received specific coaching and advice for cardiometabolic health. We retrospectively analyzed the mean and percentage changes in lipid markers in users who were remeasured after a cardiometabolic health-focused intervention, and studied the association between baseline user lifestyle characteristics and having normal lipid levels.</p><p><strong>Results: </strong>In our cohort, 199 (57.2%) participants had dyslipidemia at baseline, of which 104 participants were advised to follow a cardiometabolic health-focused intervention. Eating more amounts of favorable food groups and being more active were associated with normal lipid profiles. Among the participants who underwent remeasurement 9 months after intervention completion, 57% (17/30), 61% (19/31), 56% (15/27), 82% (9/11), and 100% (8/8) showed improvements at remeasurement for total, LDL, HDL, and non-HDL cholesterol, and triglycerides, respectively. Moreover, between 35.3% and 77.8% showed a return to normal levels. In those with high lipid levels at baseline, total cholesterol decreased by 0.5 mmol/L (7.5%), LDL cholesterol decreased by 0.39 mmol/L (10.0%), non-HDL cholesterol decreased by 0.44 mmol/L (8.3%), triglycerides decreased by 0.97 mmol/L (32.0%), and HDL increased by 0.17 mmol/L (15.6%), after the intervention.</p><p><strong>Conclusions: </strong>A cardiometabolic screening program in a general population cohort identified a significant portion of individuals with subclinical and clinical lipid levels. Individuals who, after screening, actively engaged in a cardiometabolic health-focused lifestyle program improved their lipid levels.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":" ","pages":"e34946"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987960/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Cardio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/34946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 2
Abstract
Background: Despite widespread education, many individuals fail to follow basic health behaviors such as consuming a healthy diet and exercising. Positive changes in lifestyle habits are associated with improvements in multiple cardiometabolic health risk factors, including lipid levels. Digital lifestyle interventions have been suggested as a viable complement or potential alternative to conventional health behavior change strategies. However, the benefit of digital preventive interventions for lipid levels in a preventive health context remains unclear.
Objective: This observational study aimed to determine how the levels of lipids, namely total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, non-HDL cholesterol, and triglycerides, changed over time in a Dutch general population cohort undergoing a digital preventive health program. Moreover, we looked to establish associations between lifestyle factors at baseline and lipid levels.
Methods: We included 348 adults from the Dutch general population who underwent a digitally enabled preventive health program at Ancora Health between January 2020 and October 2021. Upon enrollment, participants underwent a baseline assessment involving a comprehensive lifestyle questionnaire, a blood biochemistry panel, physical measurements, and cardiopulmonary fitness measurements. Thereafter, users underwent a lifestyle coaching program and could access the digital application to register and track health behaviors, weight, and anthropometric data at any time. Lipid levels were categorized as normal, elevated, high, and clinical dyslipidemia according to accepted international standards. If at least one lipid marker was high or HDL was low, participants received specific coaching and advice for cardiometabolic health. We retrospectively analyzed the mean and percentage changes in lipid markers in users who were remeasured after a cardiometabolic health-focused intervention, and studied the association between baseline user lifestyle characteristics and having normal lipid levels.
Results: In our cohort, 199 (57.2%) participants had dyslipidemia at baseline, of which 104 participants were advised to follow a cardiometabolic health-focused intervention. Eating more amounts of favorable food groups and being more active were associated with normal lipid profiles. Among the participants who underwent remeasurement 9 months after intervention completion, 57% (17/30), 61% (19/31), 56% (15/27), 82% (9/11), and 100% (8/8) showed improvements at remeasurement for total, LDL, HDL, and non-HDL cholesterol, and triglycerides, respectively. Moreover, between 35.3% and 77.8% showed a return to normal levels. In those with high lipid levels at baseline, total cholesterol decreased by 0.5 mmol/L (7.5%), LDL cholesterol decreased by 0.39 mmol/L (10.0%), non-HDL cholesterol decreased by 0.44 mmol/L (8.3%), triglycerides decreased by 0.97 mmol/L (32.0%), and HDL increased by 0.17 mmol/L (15.6%), after the intervention.
Conclusions: A cardiometabolic screening program in a general population cohort identified a significant portion of individuals with subclinical and clinical lipid levels. Individuals who, after screening, actively engaged in a cardiometabolic health-focused lifestyle program improved their lipid levels.