{"title":"Numerical estimation of the permeability of granular soils using the DEM and LBM or FFT-based fluid computation method","authors":"Ngoc Son Nguyen, François Bignonnet","doi":"10.1007/s10035-023-01330-1","DOIUrl":null,"url":null,"abstract":"<p>Numerical packings of spheres with uniform grain size distribution and maximum to minimum diameter ratio up to 15 are generated using the Discrete Element Method (DEM). Two numerical methods are used to compute their permeability by homogenization: the Lattice Boltzmann Method (LBM) and a Fast Fourier Transform (FFT) based method. The results given by both methods are shown to be consistent with semi-analytical and experimental results. For an identical discretization grid, the FFT method has the lowest memory and computational time requirements. The LBM is more accurate for coarse to moderately fine discretizations, while the FFT method converges linearly with the voxel size <i>h</i> with a relative discretization error below 1.5 times <span>\\(h/D_{25}\\)</span>, where <span>\\(D_{25}\\)</span> is the 25% passing by mass grain diameter. The issue of the variability of the permeability computed on finite sized samples is determined either directly by many realizations of similar random samples or indirectly by a faster filtering method on a single sample. Both methods yield similar results and indicate that a Representative Volume Element (RVE) size greater than 7<span>\\(D_{40}\\)</span> guarantees a variability of permeability below 5%.</p>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"25 3","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10035-023-01330-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-023-01330-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Numerical packings of spheres with uniform grain size distribution and maximum to minimum diameter ratio up to 15 are generated using the Discrete Element Method (DEM). Two numerical methods are used to compute their permeability by homogenization: the Lattice Boltzmann Method (LBM) and a Fast Fourier Transform (FFT) based method. The results given by both methods are shown to be consistent with semi-analytical and experimental results. For an identical discretization grid, the FFT method has the lowest memory and computational time requirements. The LBM is more accurate for coarse to moderately fine discretizations, while the FFT method converges linearly with the voxel size h with a relative discretization error below 1.5 times \(h/D_{25}\), where \(D_{25}\) is the 25% passing by mass grain diameter. The issue of the variability of the permeability computed on finite sized samples is determined either directly by many realizations of similar random samples or indirectly by a faster filtering method on a single sample. Both methods yield similar results and indicate that a Representative Volume Element (RVE) size greater than 7\(D_{40}\) guarantees a variability of permeability below 5%.
采用离散元法(DEM)对粒径分布均匀、最大最小直径比为15的球体进行了数值模拟。采用晶格玻尔兹曼方法(LBM)和基于快速傅立叶变换(FFT)的方法计算磁导率。两种方法的计算结果与半分析和实验结果一致。对于相同的离散网格,FFT方法具有最低的内存和计算时间要求。LBM对于粗到中等精细的离散化更准确,而FFT方法随着体素大小h线性收敛,相对离散化误差低于1.5倍\(h/D_{25}\),其中\(D_{25}\)为25% passing by mass grain diameter. The issue of the variability of the permeability computed on finite sized samples is determined either directly by many realizations of similar random samples or indirectly by a faster filtering method on a single sample. Both methods yield similar results and indicate that a Representative Volume Element (RVE) size greater than 7\(D_{40}\) guarantees a variability of permeability below 5%.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.