A Review on Peripheral Tinnitus, Causes, and Treatments from the Perspective of Autophagy.

IF 1.8 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Experimental Neurobiology Pub Date : 2022-08-31 DOI:10.5607/en22002
Karthikeyan A Vijayakumar, Gwang-Won Cho, Nagarajan Maharajan, Chul Ho Jang
{"title":"A Review on Peripheral Tinnitus, Causes, and Treatments from the Perspective of Autophagy.","authors":"Karthikeyan A Vijayakumar,&nbsp;Gwang-Won Cho,&nbsp;Nagarajan Maharajan,&nbsp;Chul Ho Jang","doi":"10.5607/en22002","DOIUrl":null,"url":null,"abstract":"<p><p>Tinnitus is the perception of phantom noise without any external auditory sources. The degeneration of the function or activity of the peripheral or central auditory nervous systems is one of the causes of tinnitus. This damage has numerous causes, such as loud noise, aging, and ototoxicity. All these sources excite the cells of the auditory pathway, producing reactive oxygen species that leads to the death of sensory neural hair cells. This causes involuntary movement of the tectorial membrane, resulting in the buzzing noise characteristic of tinnitus. Autophagy is an evolutionarily conserved catabolic scavenging activity inside a cell that has evolved as a cell survival mechanism. Numerous studies have demonstrated the effect of autophagy against oxidative stress, which is one of the reasons for cell excitation. This review compiles several studies that highlight the role of autophagy in protecting sensory neural hair cells against oxidative stress-induced damage. This could facilitate the development of strategies to treat tinnitus by activating autophagy.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"31 4","pages":"232-242"},"PeriodicalIF":1.8000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d5/6b/en-31-4-232.PMC9471415.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en22002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3

Abstract

Tinnitus is the perception of phantom noise without any external auditory sources. The degeneration of the function or activity of the peripheral or central auditory nervous systems is one of the causes of tinnitus. This damage has numerous causes, such as loud noise, aging, and ototoxicity. All these sources excite the cells of the auditory pathway, producing reactive oxygen species that leads to the death of sensory neural hair cells. This causes involuntary movement of the tectorial membrane, resulting in the buzzing noise characteristic of tinnitus. Autophagy is an evolutionarily conserved catabolic scavenging activity inside a cell that has evolved as a cell survival mechanism. Numerous studies have demonstrated the effect of autophagy against oxidative stress, which is one of the reasons for cell excitation. This review compiles several studies that highlight the role of autophagy in protecting sensory neural hair cells against oxidative stress-induced damage. This could facilitate the development of strategies to treat tinnitus by activating autophagy.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从自噬的角度综述外周性耳鸣、病因及治疗。
耳鸣是在没有任何外部听觉来源的情况下对虚幻噪音的感知。外周或中枢听觉神经系统功能或活动的退化是耳鸣的原因之一。造成这种损伤的原因有很多,比如噪音、老化和耳毒性。所有这些来源刺激听觉通路的细胞,产生活性氧,导致感觉神经毛细胞死亡。这会引起耳膜的不自主运动,导致耳鸣的嗡嗡声特征。自噬是细胞内一种进化上保守的分解代谢清除活动,已发展成为细胞生存机制。大量研究证明了自噬对氧化应激的作用,这是细胞兴奋的原因之一。本文综述了几项强调自噬在保护感觉神经毛细胞免受氧化应激诱导损伤中的作用的研究。这可以促进通过激活自噬来治疗耳鸣的策略的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Neurobiology
Experimental Neurobiology Neuroscience-Cellular and Molecular Neuroscience
CiteScore
4.30
自引率
4.20%
发文量
29
期刊介绍: Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.
期刊最新文献
Bidirectional Control of Emotional Behaviors by Excitatory and Inhibitory Neurons in the Orbitofrontal Cortex. Systemic Inflammation Decreases Initial Brain Injury but Attenuates Neurite Extension and Synapse Formation during the Repair of Injured Brains. The Impact of Odor Category Similarity on Multimedia Experience. β-PIX-d, a Member of the ARHGEF7 Guanine Nucleotide Exchange Factor Family, Activates Rac1 and Induces Neuritogenesis in Primary Cortical Neurons. Generation of Astrocyte-specific BEST1 Conditional Knockout Mouse with Reduced Tonic GABA Inhibition in the Brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1