Elisabeth L Scheufele, Brandi Hodor, George Popa, Suwei Wang, William J Kassler
{"title":"Population Segmentation Using a Novel Socio-Demographic Dataset.","authors":"Elisabeth L Scheufele, Brandi Hodor, George Popa, Suwei Wang, William J Kassler","doi":"10.5210/ojphi.v14i1.11651","DOIUrl":null,"url":null,"abstract":"<p><p>Appending market segmentation data to a national healthcare knowledge, attitude and behavior survey and medical claims by geocode can provide valuable insight for providers, payers and public health entities to better understand populations at a hyperlocal level and develop cohort-specific strategies for health improvement. A prolonged use case investigates population factors, including social determinants of health, in depression and develops cohort-level management strategies, utilizing market segmentation and survey data. Survey response scores for each segment were normalized against the average national score and appended to claims data to identify at-risk segment whose scores were compared with three socio-demographically comparable but not at-risk segments via Nonparametric Mann-Whitney U test to identify specific risk factors for intervention. The marketing segment, New Melting Point (NMP), was identified as at-risk. The median scores of three comparable segments differed from NMP in \"Inability to Pay For Basic Needs\" (121% vs 123%), \"Lack of Transportation\" (112% vs 153%), \"Utilities Threatened\" (103% vs 239%), \"Delay Visiting MD\" (67% vs 181%), \"Delay/Not Fill Prescription\" (117% vs 182%), \"Depressed: All/Most Time\" (127% vs 150%), and \"Internet: Virtual Visit\" (55% vs 130%) (all with p<0.001). The appended dataset illustrates NMP as having many stressors (e.g., difficult social situations, delaying seeking medical care). Strategies to improve depression management in NMP could employ virtual visits, or pharmacy incentives. Insights gleaned from appending market segmentation and healthcare utilization survey data can fill in knowledge gaps from claims-based data and provide practical and actionable insights for use by providers, payers and public health entities.</p>","PeriodicalId":74345,"journal":{"name":"Online journal of public health informatics","volume":" ","pages":"e1"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9473328/pdf/ojphi-14-1-e1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online journal of public health informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5210/ojphi.v14i1.11651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Appending market segmentation data to a national healthcare knowledge, attitude and behavior survey and medical claims by geocode can provide valuable insight for providers, payers and public health entities to better understand populations at a hyperlocal level and develop cohort-specific strategies for health improvement. A prolonged use case investigates population factors, including social determinants of health, in depression and develops cohort-level management strategies, utilizing market segmentation and survey data. Survey response scores for each segment were normalized against the average national score and appended to claims data to identify at-risk segment whose scores were compared with three socio-demographically comparable but not at-risk segments via Nonparametric Mann-Whitney U test to identify specific risk factors for intervention. The marketing segment, New Melting Point (NMP), was identified as at-risk. The median scores of three comparable segments differed from NMP in "Inability to Pay For Basic Needs" (121% vs 123%), "Lack of Transportation" (112% vs 153%), "Utilities Threatened" (103% vs 239%), "Delay Visiting MD" (67% vs 181%), "Delay/Not Fill Prescription" (117% vs 182%), "Depressed: All/Most Time" (127% vs 150%), and "Internet: Virtual Visit" (55% vs 130%) (all with p<0.001). The appended dataset illustrates NMP as having many stressors (e.g., difficult social situations, delaying seeking medical care). Strategies to improve depression management in NMP could employ virtual visits, or pharmacy incentives. Insights gleaned from appending market segmentation and healthcare utilization survey data can fill in knowledge gaps from claims-based data and provide practical and actionable insights for use by providers, payers and public health entities.
将市场细分数据应用到全国医疗保健知识、态度和行为调查以及按地理编码分类的医疗索赔中,可为医疗服务提供者、支付者和公共卫生机构提供宝贵的洞察力,从而更好地了解超本地水平的人群,并制定针对特定人群的健康改善策略。一个长期用例调查了抑郁症的人群因素,包括健康的社会决定因素,并利用市场细分和调查数据制定了群组级管理策略。通过非参数曼-惠特尼 U 检验,将每个细分市场的调查回复分数与全国平均分数进行归一化处理,并将其添加到理赔数据中,以确定高风险细分市场,并将其分数与三个社会人口统计学上具有可比性但不属于高风险的细分市场进行比较,以确定需要干预的特定风险因素。新熔点 (NMP) 营销群体被确定为高风险群体。在 "无力支付基本需求"(121% vs 123%)、"缺乏交通"(112% vs 153%)、"水电供应受到威胁"(103% vs 239%)、"延迟就诊"(67% vs 181%)、"延迟/不配药"(117% vs 182%)、"情绪低落:全部/大部分时间"(127% 对 150%)和 "互联网:虚拟就诊"(55% 对 130%)(均为 p