Qing-Quan Li, Yang Yue, Qi-Li Gao, Chen Zhong, Joana Barros
{"title":"Towards a new paradigm for segregation measurement in an age of big data.","authors":"Qing-Quan Li, Yang Yue, Qi-Li Gao, Chen Zhong, Joana Barros","doi":"10.1007/s44212-022-00003-3","DOIUrl":null,"url":null,"abstract":"<p><p>Recent theoretical and methodological advances in activity space and big data provide new opportunities to study socio-spatial segregation. This review first provides an overview of the literature in terms of measurements, spatial patterns, underlying causes, and social consequences of spatial segregation. These studies are mainly place-centred and static, ignoring the segregation experience across various activity spaces due to the dynamism of movements. In response to this challenge, we highlight the work in progress toward a new paradigm for segregation studies. Specifically, this review presents how and the extent to which activity space methods can advance segregation research from a people-based perspective. It explains the requirements of mobility-based methods for quantifying the dynamics of segregation due to high movement within the urban context. It then discusses and illustrates a dynamic and multi-dimensional framework to show how big data can enhance understanding segregation by capturing individuals' spatio-temporal behaviours. The review closes with new directions and challenges for segregation research using big data.</p>","PeriodicalId":75283,"journal":{"name":"Urban informatics","volume":" ","pages":"5"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458482/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44212-022-00003-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Recent theoretical and methodological advances in activity space and big data provide new opportunities to study socio-spatial segregation. This review first provides an overview of the literature in terms of measurements, spatial patterns, underlying causes, and social consequences of spatial segregation. These studies are mainly place-centred and static, ignoring the segregation experience across various activity spaces due to the dynamism of movements. In response to this challenge, we highlight the work in progress toward a new paradigm for segregation studies. Specifically, this review presents how and the extent to which activity space methods can advance segregation research from a people-based perspective. It explains the requirements of mobility-based methods for quantifying the dynamics of segregation due to high movement within the urban context. It then discusses and illustrates a dynamic and multi-dimensional framework to show how big data can enhance understanding segregation by capturing individuals' spatio-temporal behaviours. The review closes with new directions and challenges for segregation research using big data.