Inference for transition probabilities in non-Markov multi-state models.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2022-10-01 Epub Date: 2022-06-28 DOI:10.1007/s10985-022-09560-w
Per Kragh Andersen, Eva Nina Sparre Wandall, Maja Pohar Perme
{"title":"Inference for transition probabilities in non-Markov multi-state models.","authors":"Per Kragh Andersen,&nbsp;Eva Nina Sparre Wandall,&nbsp;Maja Pohar Perme","doi":"10.1007/s10985-022-09560-w","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-state models are frequently used when data come from subjects observed over time and where focus is on the occurrence of events that the subjects may experience. A convenient modeling assumption is that the multi-state stochastic process is Markovian, in which case a number of methods are available when doing inference for both transition intensities and transition probabilities. The Markov assumption, however, is quite strict and may not fit actual data in a satisfactory way. Therefore, inference methods for non-Markov models are needed. In this paper, we review methods for estimating transition probabilities in such models and suggest ways of doing regression analysis based on pseudo observations. In particular, we will compare methods using land-marking with methods using plug-in. The methods are illustrated using simulations and practical examples from medical research.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-022-09560-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-state models are frequently used when data come from subjects observed over time and where focus is on the occurrence of events that the subjects may experience. A convenient modeling assumption is that the multi-state stochastic process is Markovian, in which case a number of methods are available when doing inference for both transition intensities and transition probabilities. The Markov assumption, however, is quite strict and may not fit actual data in a satisfactory way. Therefore, inference methods for non-Markov models are needed. In this paper, we review methods for estimating transition probabilities in such models and suggest ways of doing regression analysis based on pseudo observations. In particular, we will compare methods using land-marking with methods using plug-in. The methods are illustrated using simulations and practical examples from medical research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非马尔可夫多状态模型中转移概率的推断。
当数据来自长期观察的对象,并且关注对象可能经历的事件发生时,经常使用多状态模型。一个方便的建模假设是多状态随机过程是马尔可夫的,在这种情况下,在对转移强度和转移概率进行推理时,有许多方法可用。然而,马尔可夫假设是相当严格的,可能不能以令人满意的方式拟合实际数据。因此,需要非马尔可夫模型的推理方法。在本文中,我们回顾了在这类模型中估计转移概率的方法,并提出了基于伪观测值进行回归分析的方法。特别是,我们将比较使用标记的方法与使用插件的方法。通过仿真和医学研究实例说明了这些方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Nonparametric estimation of the cumulative incidence function for doubly-truncated and interval-censored competing risks data. Volume under the ROC surface for high-dimensional independent screening with ordinal competing risk outcomes. Improving marginal hazard ratio estimation using quadratic inference functions. Quantile forward regression for high-dimensional survival data. Cox (1972): recollections and reflections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1