Design and Optimization of Dual Material Gate Junctionless FinFET Using Dimensional Effect, Gate Oxide and Workfunction Engineering at 7 nm Technology Node

IF 2.8 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Silicon Pub Date : 2022-03-01 DOI:10.1007/s12633-022-01769-6
Rambabu Kusuma, V. K. Hanumantha Rao Talari
{"title":"Design and Optimization of Dual Material Gate Junctionless FinFET Using Dimensional Effect, Gate Oxide and Workfunction Engineering at 7 nm Technology Node","authors":"Rambabu Kusuma,&nbsp;V. K. Hanumantha Rao Talari","doi":"10.1007/s12633-022-01769-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we designed and analyzed the performance of Dual Material Gate Junctionless FinFET(DMG JLFinFET) using gate engineering with high-k dielectrics for nanoscale applications. Here first we optimized the doping and later optimized the work function. Thereafter by using these optimized values we carried our work for other simulations. Various high-k materials are used as gate oxide. We found that by replacing gate oxide with high-k materials the device performance is improved in terms of I<sub>on</sub>/I<sub>off</sub>, SS, and DIBL. The fine tuning of gate workfunction reduces short channel effects (SCEs). In Fin width (F<sub>W</sub>) variation, single gate oxide HfO<sub>2</sub> has 61.29 mV/dec and 16.03 mV/V, dual gate-oxide Si<sub>3</sub>N<sub>4</sub> + HfO<sub>2</sub> has 61.22 mV/dec and 18.49 mV/V as SS and DIBL, respectively. In Fin height (F<sub>H</sub>) variation single gate oxide HfO<sub>2</sub> has 63.04 mV/V and 27.11 mV/V, dual gate oxide Si<sub>3</sub>N<sub>4</sub> + HfO<sub>2</sub> has 62.57 mV/V and 26.05 mV/V as SS and DIBL, respectively. I<sub>on</sub>/I<sub>off</sub> is improved to 0.78 × 10<sup>7</sup> using HfO<sub>2</sub> and 1.25 × 10<sup>7</sup> using Si<sub>3</sub>N<sub>4</sub> + HfO<sub>2</sub> as gate oxides. The ratio of I<sub>on</sub>/I<sub>off</sub> with F<sub>H</sub> and F<sub>W</sub> variation provide evidence that the DMG JLFinFET is best competent for low power nanoscale applications. 3-D simulations are done using Cogenda genius Visual TCAD.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"14 16","pages":"10301 - 10311"},"PeriodicalIF":2.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12633-022-01769-6.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-022-01769-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we designed and analyzed the performance of Dual Material Gate Junctionless FinFET(DMG JLFinFET) using gate engineering with high-k dielectrics for nanoscale applications. Here first we optimized the doping and later optimized the work function. Thereafter by using these optimized values we carried our work for other simulations. Various high-k materials are used as gate oxide. We found that by replacing gate oxide with high-k materials the device performance is improved in terms of Ion/Ioff, SS, and DIBL. The fine tuning of gate workfunction reduces short channel effects (SCEs). In Fin width (FW) variation, single gate oxide HfO2 has 61.29 mV/dec and 16.03 mV/V, dual gate-oxide Si3N4 + HfO2 has 61.22 mV/dec and 18.49 mV/V as SS and DIBL, respectively. In Fin height (FH) variation single gate oxide HfO2 has 63.04 mV/V and 27.11 mV/V, dual gate oxide Si3N4 + HfO2 has 62.57 mV/V and 26.05 mV/V as SS and DIBL, respectively. Ion/Ioff is improved to 0.78 × 107 using HfO2 and 1.25 × 107 using Si3N4 + HfO2 as gate oxides. The ratio of Ion/Ioff with FH and FW variation provide evidence that the DMG JLFinFET is best competent for low power nanoscale applications. 3-D simulations are done using Cogenda genius Visual TCAD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于尺寸效应、栅极氧化物和7nm工艺节点的双材料栅极无结FinFET设计与优化
在本文中,我们设计和分析了双材料栅极无结FinFET(DMG JLFinFET)的性能与高k介电的栅极工程纳米级应用。在这里我们首先优化掺杂,然后优化功函数。此后,我们利用这些优化值进行了其他模拟。各种高钾材料被用作栅极氧化物。我们发现,通过用高k材料取代栅氧化物,器件在离子/离合、SS和DIBL方面的性能得到了改善。栅极工作函数的微调减少了短通道效应(SCEs)。在鳍宽(FW)变化中,单栅氧化Si3N4 + HfO2分别为61.29 mV/dec和16.03 mV/V,双栅氧化Si3N4 + HfO2分别为61.22 mV/dec和18.49 mV/V。在鳍高(FH)变化中,单极氧化物Si3N4 + HfO2分别为63.04 mV/V和27.11 mV/V,双极氧化物Si3N4 + HfO2分别为SS和DIBL的62.57 mV/V和26.05 mV/V。采用HfO2和Si3N4 + HfO2作为栅极氧化物,离子/离合比分别提高到0.78 × 107和1.25 × 107。离子/离合比随FH和FW的变化提供了证据,证明DMG JLFinFET最适合低功率纳米级应用。使用Cogenda genius Visual TCAD进行三维仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Silicon
Silicon CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.90
自引率
20.60%
发文量
685
审稿时长
>12 weeks
期刊介绍: The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.
期刊最新文献
Radiation-Stimulated Transformation of Cxygen Atoms Between Impurity Phase States of A Growing Silicon Single Crystal Ecologically Sound Syntheses of Imidazoindole Derivatives Mediated by Cu-MCM-41-phen under Room Temperature Sustainable Recycling of Silicon from End-of-Life Photovoltaic Panels for the Synthesis of Porous Cordierite Via Bischofite-Assisted Chlorination Silicon Cycling in Forest Ecosystems: A Review Focusing on the Role of Soil Biogeochemistry Engineered Calcium Silicate-Hexaboride Biocomposites: A Versatile Platform for Personalized Orthopedic Therapies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1