K V Rosova, T V Bolgova, K R Tymoshenko, Ju D Vinnichuck, L M Gunina, V V Bezugla
{"title":"RESTRUCTURING OF SKELETAL MUSCLE, LUNG AND HEART TISSUES OF RATS UNDER HYPOXIA TRAINING.","authors":"K V Rosova, T V Bolgova, K R Tymoshenko, Ju D Vinnichuck, L M Gunina, V V Bezugla","doi":"10.15407/fz62.06.072","DOIUrl":null,"url":null,"abstract":"<p><p>We studied some specific features of the changes in mor- pho- and stereometric characteristics of the ultrastructure of tissues of lungs, heart, and muscles, their capillarization, and the mitochondrial apparatus of cells in adult male Wistar rats under long-term physical loads. It is shown that the influence of a sustained training accompanied by the development of exercise-induced hypoxia on the structural readjustments of tissues of muscles, lungs, and myocardium can be conditionally divided into 2 groups: with destructive and compensatoryadaptive features. The changes with destructive character include, firstly, those of the ultrastructure of biological bar- riers such as, in particular, hyperhydration of barriers on the whole and their separate layers, which deteriorates the conditions of oxygen diffusion; second, the destructive changes in mitochondria (it increased the number of damaged lung organelles by 4.1 times, in the heart - at 4.5-5.5 times depending on subpopulations and in muscle - by 3.5-12.2 times also depending on the subpopulation of mitochondria), which are accompanied by a decrease in the energy potential of the mitochondrial apparatus, are observed. To the changes with compensatory-adaptive character, we refer an increase in the number of functioning capillaries (by 80% in the gastrocnemius muscle and by 60% in the myocardium), which prevents the development of secondary tissue hypoxia; intensification of pinocytosis in endotheliocytes; activation of mitochondrial morphogenesis, which was accompanied by an increase of the number of organelles at gastrocnemius muscle by 65%, in the lungs - in 4 times and in heart by 60-80% depending on the mitochondrial subpopulations; and appearance of young mitochondria and mitochondria with moderate degree of swelling, which favors the growth of the energy power of the mitochondrial apparatus of cells.</p>","PeriodicalId":73031,"journal":{"name":"Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994)","volume":"62 6","pages":"72-80"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiziolohichnyi zhurnal (Kiev, Ukraine : 1994)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/fz62.06.072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We studied some specific features of the changes in mor- pho- and stereometric characteristics of the ultrastructure of tissues of lungs, heart, and muscles, their capillarization, and the mitochondrial apparatus of cells in adult male Wistar rats under long-term physical loads. It is shown that the influence of a sustained training accompanied by the development of exercise-induced hypoxia on the structural readjustments of tissues of muscles, lungs, and myocardium can be conditionally divided into 2 groups: with destructive and compensatoryadaptive features. The changes with destructive character include, firstly, those of the ultrastructure of biological bar- riers such as, in particular, hyperhydration of barriers on the whole and their separate layers, which deteriorates the conditions of oxygen diffusion; second, the destructive changes in mitochondria (it increased the number of damaged lung organelles by 4.1 times, in the heart - at 4.5-5.5 times depending on subpopulations and in muscle - by 3.5-12.2 times also depending on the subpopulation of mitochondria), which are accompanied by a decrease in the energy potential of the mitochondrial apparatus, are observed. To the changes with compensatory-adaptive character, we refer an increase in the number of functioning capillaries (by 80% in the gastrocnemius muscle and by 60% in the myocardium), which prevents the development of secondary tissue hypoxia; intensification of pinocytosis in endotheliocytes; activation of mitochondrial morphogenesis, which was accompanied by an increase of the number of organelles at gastrocnemius muscle by 65%, in the lungs - in 4 times and in heart by 60-80% depending on the mitochondrial subpopulations; and appearance of young mitochondria and mitochondria with moderate degree of swelling, which favors the growth of the energy power of the mitochondrial apparatus of cells.