The P450 genes of the cat flea, Ctenocephalides felis: a CYPome in flux

IF 2.2 Q1 ENTOMOLOGY Current Research in Insect Science Pub Date : 2022-01-01 DOI:10.1016/j.cris.2022.100032
René Feyereisen
{"title":"The P450 genes of the cat flea, Ctenocephalides felis: a CYPome in flux","authors":"René Feyereisen","doi":"10.1016/j.cris.2022.100032","DOIUrl":null,"url":null,"abstract":"<div><p>The genome of the cat flea, an ectoparasite of major veterinary importance and the first representative of the Siphonaptera, is highly unusual among arthropod genomes in showing a variable size and a very large number of gene duplications (Driscoll et al., 2020). The cat flea is the target of several classes of insecticides, justifying the description of its CYPome, the complement of P450s that are an important family of detoxification enzymes. 103 P450 genes were annotated on the nine chromosomes, with an additional 12 genes on small, extrachromosomal scaffolds. Only 34 genes were found as single sequences, with 47 duplicated two to four-fold. This included duplication of genes that are mostly single copy P450 genes in other arthropods. Large clusters of mitochondrial clan P450s were observed, resulting in a CYP12 bloom within this clan to 34 genes, a number of mitochondrial P450s not seen in other animals so far. The variable geometry of the cat flea CYPome poses a challenge to the study of P450 function in this species, and raises the question of the underlying causes of single copy control versus multicopy licence of P450 genes.</p></div>","PeriodicalId":34629,"journal":{"name":"Current Research in Insect Science","volume":"2 ","pages":"Article 100032"},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0a/43/main.PMC9387431.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Insect Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266651582200004X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The genome of the cat flea, an ectoparasite of major veterinary importance and the first representative of the Siphonaptera, is highly unusual among arthropod genomes in showing a variable size and a very large number of gene duplications (Driscoll et al., 2020). The cat flea is the target of several classes of insecticides, justifying the description of its CYPome, the complement of P450s that are an important family of detoxification enzymes. 103 P450 genes were annotated on the nine chromosomes, with an additional 12 genes on small, extrachromosomal scaffolds. Only 34 genes were found as single sequences, with 47 duplicated two to four-fold. This included duplication of genes that are mostly single copy P450 genes in other arthropods. Large clusters of mitochondrial clan P450s were observed, resulting in a CYP12 bloom within this clan to 34 genes, a number of mitochondrial P450s not seen in other animals so far. The variable geometry of the cat flea CYPome poses a challenge to the study of P450 function in this species, and raises the question of the underlying causes of single copy control versus multicopy licence of P450 genes.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
猫蚤的P450基因:一个流动的CYPome
猫蚤是一种具有重要兽医意义的外寄生虫,也是管翅目的第一个代表,其基因组在节肢动物基因组中非常不寻常,显示出可变大小和大量基因重复(Driscoll et al., 2020)。猫蚤是几种杀虫剂的目标,证明了对其CYPome的描述是正确的,CYPome是p450的补充,是一个重要的解毒酶家族。103个P450基因被标注在9条染色体上,另外12个基因被标注在染色体外的小支架上。只有34个基因是单序列,47个重复了2到4倍。这包括在其他节肢动物中主要是单拷贝P450基因的基因复制。观察到线粒体家族p450的大集群,导致该家族的CYP12大量繁殖至34个基因,许多线粒体p450迄今未在其他动物中见过。猫蚤CYPome的可变几何形状对该物种P450功能的研究提出了挑战,并提出了P450基因单拷贝控制与多拷贝许可的潜在原因问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Research in Insect Science
Current Research in Insect Science Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
3.20
自引率
0.00%
发文量
22
审稿时长
36 days
期刊最新文献
Exploring novel pyrethroid resistance mechanisms through RNA-seq in Triatoma dimidiata from Colombia. Consequences of "zombie-making" and generalist fungal pathogens on carpenter ant microbiota. The nutritional dimension of facultative bacterial symbiosis in aphids: Current status and methodological considerations for future research Diapause survival requires a temperature-sensitive preparatory period Identification of a receptor for the sex pheromone of the vine mealybug, Planococcus ficus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1