{"title":"SCALAR ON NETWORK REGRESSION VIA BOOSTING.","authors":"Emily L Morris, Kevin He, Jian Kang","doi":"10.1214/22-aoas1612","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimaging studies have a growing interest in learning the association between the individual brain connectivity networks and their clinical characteristics. It is also of great interest to identify the sub brain networks as biomarkers to predict the clinical symptoms, such as disease status, potentially providing insight on neuropathology. This motivates the need for developing a new type of regression model where the response variable is scalar, and predictors are networks that are typically represented as adjacent matrices or weighted adjacent matrices, to which we refer as scalar-on-network regression. In this work, we develop a new boosting method for model fitting with sub-network markers selection. Our approach, as opposed to group lasso or other existing regularization methods, is essentially a gradient descent algorithm leveraging known network structure. We demonstrate the utility of our methods via simulation studies and analysis of the resting-state fMRI data in a cognitive developmental cohort study.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9624505/pdf/nihms-1815340.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aoas1612","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroimaging studies have a growing interest in learning the association between the individual brain connectivity networks and their clinical characteristics. It is also of great interest to identify the sub brain networks as biomarkers to predict the clinical symptoms, such as disease status, potentially providing insight on neuropathology. This motivates the need for developing a new type of regression model where the response variable is scalar, and predictors are networks that are typically represented as adjacent matrices or weighted adjacent matrices, to which we refer as scalar-on-network regression. In this work, we develop a new boosting method for model fitting with sub-network markers selection. Our approach, as opposed to group lasso or other existing regularization methods, is essentially a gradient descent algorithm leveraging known network structure. We demonstrate the utility of our methods via simulation studies and analysis of the resting-state fMRI data in a cognitive developmental cohort study.
期刊介绍:
Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.