{"title":"An automated machine learning tool for breast cancer diagnosis for healthcare professionals.","authors":"Tawseef Ayoub Shaikh, Rashid Ali","doi":"10.1080/20476965.2021.1966324","DOIUrl":null,"url":null,"abstract":"<p><p>The paper proposes a hybrid metaheuristic algorithm known as harmony search and simulated annealing (HS-SA) for accurate and precise breast malignancy disclosure by integrating harmony search (HS) and simulated annealing (SA) optimisation methods. An enhanced wavelet-based contourlet transform (WBCT) procedure for mining the highlights of the region of interest (ROI) is explored, that allows execution upgradation over other standard procedures. The anticipated HS-SA algorithm aims to reduce the feature dimensions and assemble at the unparalleled optimal feature subset. The SVM classifier fed with the picke.d feature subsets and assisted by varied kernel functions upheld its classification capacities in contrast with the conformist machine learning classification and optimisation methods. The portrayed computer-aided diagnosis (CAD) model is confronted by evaluating its learning capability on two different breast mammographic datasets i) benchmark BCDR-F03 dataset and ii) local mammographic dataset. Preliminary propagations, experimental outcomes, and quantifiable assessments likewise demonstrate that the proposed model is pragmatic and favourable for the automated breast malignancy findings with optimal performance and fewer overheads. The discoveries show that the proposed CAD system (HS-SA+Kernel SVM) is superior to various characterisation accuracy techniques with an accuracy of 99.89% for the local mammographic dataset and 99.76% for benchmark BCDR-F03 dataset, AUC of 99.41% for the local mammographic dataset and 99.21% for reference BCDR-F03 dataset while keeping the element space restricted to only seven feature subsets and computational prerequisites as low as is judicious.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9621296/pdf/THSS_11_1966324.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20476965.2021.1966324","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The paper proposes a hybrid metaheuristic algorithm known as harmony search and simulated annealing (HS-SA) for accurate and precise breast malignancy disclosure by integrating harmony search (HS) and simulated annealing (SA) optimisation methods. An enhanced wavelet-based contourlet transform (WBCT) procedure for mining the highlights of the region of interest (ROI) is explored, that allows execution upgradation over other standard procedures. The anticipated HS-SA algorithm aims to reduce the feature dimensions and assemble at the unparalleled optimal feature subset. The SVM classifier fed with the picke.d feature subsets and assisted by varied kernel functions upheld its classification capacities in contrast with the conformist machine learning classification and optimisation methods. The portrayed computer-aided diagnosis (CAD) model is confronted by evaluating its learning capability on two different breast mammographic datasets i) benchmark BCDR-F03 dataset and ii) local mammographic dataset. Preliminary propagations, experimental outcomes, and quantifiable assessments likewise demonstrate that the proposed model is pragmatic and favourable for the automated breast malignancy findings with optimal performance and fewer overheads. The discoveries show that the proposed CAD system (HS-SA+Kernel SVM) is superior to various characterisation accuracy techniques with an accuracy of 99.89% for the local mammographic dataset and 99.76% for benchmark BCDR-F03 dataset, AUC of 99.41% for the local mammographic dataset and 99.21% for reference BCDR-F03 dataset while keeping the element space restricted to only seven feature subsets and computational prerequisites as low as is judicious.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.