Xianliang Zeng, Li Zhao, Zhengliang Chen, Lingjun Kong, Sizeng Chen
{"title":"Calpain inhibitors inhibit mitochondrial calpain activity to ameliorate apoptosis of cocultured myoblast.","authors":"Xianliang Zeng, Li Zhao, Zhengliang Chen, Lingjun Kong, Sizeng Chen","doi":"10.4103/0304-4920.359797","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer cachexia is a fatal syndrome associated with muscle regeneration disability. Tumor factors induce the apoptosis of myoblasts to impair the regeneration of skeletal muscle. Cancer cachectic myoblast apoptosis is associated with mitochondria injury. It has been reported that activated mitochondrial calpain caused mitochondria injury in mouse cardiomyocytes and pulmonary smooth muscle. We wondered if mitochondrial calpains exist in skeletal myoblast and their potential role in myoblast apoptosis of cancer cachexia. We used a transwell to build a novel myoblast-carcinoma cell coculture model to simulate the cancer cachexia environment in vitro. Calpain inhibitors, calpastatin (CAST) and calpeptin (CAPT), were used during coculture. We found for the first time that two calpains (calpain-1 and calpain-2) and CAST were present in the mitochondria of myoblast. The activation of mitochondrial calpain decreased mitochondrial complex I activity, promoted mitochondrial permeability transition pore opening, and impaired mitochondrial membrane potential in myoblast during coculture, which induced myoblasts apoptosis. CAST and CAPT protected myoblasts from apoptosis by inhibiting mitochondrial calpain activity, which may attenuate or even reverse cancer cachectic muscle atrophy by improving muscle regeneration ability. Our study provides a new perspective for understanding the mechanism of cancer cachexia, and will further contribute to treat cancer cachexia by focusing on the mitochondrial calpain activity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/0304-4920.359797","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Cancer cachexia is a fatal syndrome associated with muscle regeneration disability. Tumor factors induce the apoptosis of myoblasts to impair the regeneration of skeletal muscle. Cancer cachectic myoblast apoptosis is associated with mitochondria injury. It has been reported that activated mitochondrial calpain caused mitochondria injury in mouse cardiomyocytes and pulmonary smooth muscle. We wondered if mitochondrial calpains exist in skeletal myoblast and their potential role in myoblast apoptosis of cancer cachexia. We used a transwell to build a novel myoblast-carcinoma cell coculture model to simulate the cancer cachexia environment in vitro. Calpain inhibitors, calpastatin (CAST) and calpeptin (CAPT), were used during coculture. We found for the first time that two calpains (calpain-1 and calpain-2) and CAST were present in the mitochondria of myoblast. The activation of mitochondrial calpain decreased mitochondrial complex I activity, promoted mitochondrial permeability transition pore opening, and impaired mitochondrial membrane potential in myoblast during coculture, which induced myoblasts apoptosis. CAST and CAPT protected myoblasts from apoptosis by inhibiting mitochondrial calpain activity, which may attenuate or even reverse cancer cachectic muscle atrophy by improving muscle regeneration ability. Our study provides a new perspective for understanding the mechanism of cancer cachexia, and will further contribute to treat cancer cachexia by focusing on the mitochondrial calpain activity.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.