A five-course meal symposium on "The Future of Muscle is Now".

Biophysics and Physicobiology Pub Date : 2022-08-27 eCollection Date: 2022-01-01 DOI:10.2142/biophysico.bppb-v19.0029
Madoka Suzuki, Kotaro Oyama
{"title":"A five-course meal symposium on \"The Future of Muscle is Now\".","authors":"Madoka Suzuki, Kotaro Oyama","doi":"10.2142/biophysico.bppb-v19.0029","DOIUrl":null,"url":null,"abstract":"Muscles are the source of mechanical force. Muscles enable us to move our arms and legs, speak, pump blood, and digest food. Muscle mechanics has been an important subject in biophysics. Accordingly, it is now possible to explain how mechanical force is produced and assembled at all levels of the hierarchy of the muscle contractile system, that is, from a single protein molecule at the smallest scale, to an assembly of the molecules (sarcomere; a highly ordered bipolar structure mainly composed of actin filaments that are protein polymers of actin monomers, and their counterpart myosin filaments that are of myosin motor proteins), to a myofibril (assembly of sarcomeres connected in series) and muscle cell, and finally, to a tissue. Then, are there no intriguing questions that can be asked regarding biophysics? We have organized a symposium titled “The Future of Muscle is Now” at the 60th Annual Meeting of the Biophysical Society of Japan, held in September 2022 (Figure 1). In the symposium, we intend to demonstrate that the previously mentioned tragic perspective may be incorrect.","PeriodicalId":8976,"journal":{"name":"Biophysics and Physicobiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/45/43/19_e190029.PMC9592567.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysics and Physicobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2142/biophysico.bppb-v19.0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Muscles are the source of mechanical force. Muscles enable us to move our arms and legs, speak, pump blood, and digest food. Muscle mechanics has been an important subject in biophysics. Accordingly, it is now possible to explain how mechanical force is produced and assembled at all levels of the hierarchy of the muscle contractile system, that is, from a single protein molecule at the smallest scale, to an assembly of the molecules (sarcomere; a highly ordered bipolar structure mainly composed of actin filaments that are protein polymers of actin monomers, and their counterpart myosin filaments that are of myosin motor proteins), to a myofibril (assembly of sarcomeres connected in series) and muscle cell, and finally, to a tissue. Then, are there no intriguing questions that can be asked regarding biophysics? We have organized a symposium titled “The Future of Muscle is Now” at the 60th Annual Meeting of the Biophysical Society of Japan, held in September 2022 (Figure 1). In the symposium, we intend to demonstrate that the previously mentioned tragic perspective may be incorrect.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于“肌肉的未来是现在”的五道菜的研讨会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Description of peptide bond planarity from high-resolution neutron crystallography. Population dynamics models for various forms of adaptation. Frontiers of microbial movement research. Unveiling the physics underlying symmetry breaking of the actin cytoskeleton: An artificial cell-based approach. SATORI: Amplification-free digital RNA detection method for the diagnosis of viral infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1