{"title":"Mediation analysis using Bayesian tree ensembles.","authors":"Antonio R Linero, Qian Zhang","doi":"10.1037/met0000504","DOIUrl":null,"url":null,"abstract":"<p><p>We present a general framework for causal mediation analysis using nonparametric Bayesian methods in the potential outcomes framework. Our model, which we refer to as the Bayesian causal mediation forests model, combines recent advances in Bayesian machine learning using decision tree ensembles, Bayesian nonparametric causal inference, and a Bayesian implementation of the g-formula for computing causal effects. Because of its strong performance on simulated data and because it greatly reduces researcher degrees of freedom, we argue that Bayesian causal mediation forests are highly attractive as a default approach. Of independent interest, we also introduce a new sensitivity analysis technique for mediation analysis with continuous outcomes that is widely applicable. We demonstrate our approach on both simulated and real data sets, and show that our approach obtains low mean squared error and close to nominal coverage of 95% interval estimates, even in highly nonlinear problems on which other methods fail. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":7,"journal":{"name":"ACS Applied Polymer Materials","volume":" ","pages":"60-82"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Polymer Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1037/met0000504","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a general framework for causal mediation analysis using nonparametric Bayesian methods in the potential outcomes framework. Our model, which we refer to as the Bayesian causal mediation forests model, combines recent advances in Bayesian machine learning using decision tree ensembles, Bayesian nonparametric causal inference, and a Bayesian implementation of the g-formula for computing causal effects. Because of its strong performance on simulated data and because it greatly reduces researcher degrees of freedom, we argue that Bayesian causal mediation forests are highly attractive as a default approach. Of independent interest, we also introduce a new sensitivity analysis technique for mediation analysis with continuous outcomes that is widely applicable. We demonstrate our approach on both simulated and real data sets, and show that our approach obtains low mean squared error and close to nominal coverage of 95% interval estimates, even in highly nonlinear problems on which other methods fail. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
期刊介绍:
ACS Applied Polymer Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics, and biology relevant to applications of polymers.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates fundamental knowledge in the areas of materials, engineering, physics, bioscience, polymer science and chemistry into important polymer applications. The journal is specifically interested in work that addresses relationships among structure, processing, morphology, chemistry, properties, and function as well as work that provide insights into mechanisms critical to the performance of the polymer for applications.