Individual and Simultaneous Determination of Heavy Metal Ions Using Carbon Paste Electrode Modified with Titania Nanoparticles

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL Electrocatalysis Pub Date : 2023-05-01 DOI:10.1007/s12678-023-00824-z
Elif Tüzün, Gülten Atun
{"title":"Individual and Simultaneous Determination of Heavy Metal Ions Using Carbon Paste Electrode Modified with Titania Nanoparticles","authors":"Elif Tüzün,&nbsp;Gülten Atun","doi":"10.1007/s12678-023-00824-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the development of ultrasensitive and selective sensors for heavy metal ions, the fabrication of titania-modified carbon paste electrodes with electrochemical sensing capabilities has received considerable attention. In this study, we investigated the facile preparation of the titania-modified carbon paste electrode and the determination of trace amounts of hazardous Hg(II), Cu(II), and Pb(II) ions by applying the square wave anodic stripping voltammetry method. The titania nanoparticles were characterized using various techniques such as size analyzer, XRD, and FTIR to determine their chemical properties. The experimental findings demonstrated that the titania nanoparticles were uniformly distributed in the graphite used to construct the modified electrode and had an average particle size of 85 nm in crystalline anatase form. Compared with the measurement results, the prepared sensor exhibited excellent sensing performance against Hg(II), Cu(II), and Pb(II) ions with a low detection limit of 15.26, 0.56, and 1.65 nM, respectively. In ternary solutions, their simultaneous determinations showed that the electrode is more sensitive to Hg(II) and Pb(II) ions, with detection limits of 8.32 and 0.25 nM, respectively. Consequently, the experimental results showed that the titania-modified carbon paste electrode is a promising sensor for the determination of hazardous Hg(II), Cu(II) and Pb(II) ions in sensor applications.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 4","pages":"636 - 647"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12678-023-00824-z.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00824-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 1

Abstract

In the development of ultrasensitive and selective sensors for heavy metal ions, the fabrication of titania-modified carbon paste electrodes with electrochemical sensing capabilities has received considerable attention. In this study, we investigated the facile preparation of the titania-modified carbon paste electrode and the determination of trace amounts of hazardous Hg(II), Cu(II), and Pb(II) ions by applying the square wave anodic stripping voltammetry method. The titania nanoparticles were characterized using various techniques such as size analyzer, XRD, and FTIR to determine their chemical properties. The experimental findings demonstrated that the titania nanoparticles were uniformly distributed in the graphite used to construct the modified electrode and had an average particle size of 85 nm in crystalline anatase form. Compared with the measurement results, the prepared sensor exhibited excellent sensing performance against Hg(II), Cu(II), and Pb(II) ions with a low detection limit of 15.26, 0.56, and 1.65 nM, respectively. In ternary solutions, their simultaneous determinations showed that the electrode is more sensitive to Hg(II) and Pb(II) ions, with detection limits of 8.32 and 0.25 nM, respectively. Consequently, the experimental results showed that the titania-modified carbon paste electrode is a promising sensor for the determination of hazardous Hg(II), Cu(II) and Pb(II) ions in sensor applications.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米二氧化钛修饰碳糊电极单独测定和同时测定重金属离子
在重金属离子超灵敏和选择性传感器的发展中,具有电化学传感能力的钛改性碳糊电极的制备受到了广泛的关注。本研究采用方波阳极溶出伏安法研究了钛修饰碳膏电极的简易制备及痕量有害离子Hg(II)、Cu(II)和Pb(II)的测定。利用粒度分析仪、XRD、FTIR等技术对纳米二氧化钛进行了表征,以确定其化学性质。实验结果表明,二氧化钛纳米颗粒均匀分布在构建修饰电极的石墨中,平均粒径为85 nm,呈锐钛矿晶体形式。与测量结果相比,所制备的传感器对Hg(II)、Cu(II)和Pb(II)离子具有良好的传感性能,检测限分别为15.26、0.56和1.65 nM。在三元溶液中,电极对Hg(II)和Pb(II)离子更敏感,检出限分别为8.32 nM和0.25 nM。因此,实验结果表明,钛改性碳糊电极是一种很有前途的传感器,可用于有害汞(II)、铜(II)和铅(II)离子的检测。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
期刊最新文献
A Molecularly Imprinted Composite-based Novel Electrochemical Sensor Using o-Phenylenediamine, Molybdenum Nanoparticle, and Multiwalled Carbon Nanotube for Triclosan Detection from Water Cu2(V2O7)-rGO Engineered Sensor for the Electrochemical Determination of Antipsychotic drug, Pimozide ​Study of Fabrication and Properties of NiCoP Nanocrystalline Thin Film Electrodes for Hydrogen Evolution Electrocatalysts​ Green Synthesis of Cobalt Oxide Decorated Chitosan Substrates for Electrochemical Detection of Nitrite and Hydrogen Evolution Reactions Manganese Oxide Applications in Sulfonamides Electrochemical, Thermal and Optical Sensors: A Short Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1