Relating a Spiking Neural Network Model and the Diffusion Model of Decision-Making.

Computational brain & behavior Pub Date : 2022-09-01 Epub Date: 2022-06-13 DOI:10.1007/s42113-022-00143-4
Akash Umakantha, Braden A Purcell, Thomas J Palmeri
{"title":"Relating a Spiking Neural Network Model and the Diffusion Model of Decision-Making.","authors":"Akash Umakantha, Braden A Purcell, Thomas J Palmeri","doi":"10.1007/s42113-022-00143-4","DOIUrl":null,"url":null,"abstract":"<p><p>Many models of decision making assume accumulation of evidence to threshold as a core mechanism to predict response probabilities and response times. A spiking neural network model (Wang, 2002) instantiates these mechanisms at the level of biophysically-plausible pools of neurons with excitatory and inhibitory connections, and has numerous model parameters tuned by physiological measures. The diffusion model (Ratcliff, 1978) is a cognitive model that can be fitted to a range of behaviors and conditions. We investigated how parameters of the cognitive-level diffusion model relate to the parameters of a neural-level spiking model. In each simulated \"experiment\", we generated \"data\" from the spiking neural network by factorially combining a manipulation of choice difficulty (via the input to the spiking model) and a manipulation of one of the core parameters of the spiking model. We then fitted the diffusion model to these simulated data to observe how manipulation of each core spiking model parameter mapped on to fitted drift rate, response threshold, and non-decision time. Manipulations of parameters in the spiking model related to input sensitivity, threshold, and stimulus processing time mapped on to their conceptual analogues in the diffusion model, namely drift rate, threshold, and non-decision time. Manipulations of parameters in the spiking model with no direct analogue to the diffusion model, non-stimulus-specific background input, strength of recurrent excitation, and receptor conductances, mapped on to threshold in the diffusion model. We discuss implications of these results for interpretations of fits of the diffusion model to behavioral data.</p>","PeriodicalId":72660,"journal":{"name":"Computational brain & behavior","volume":"5 3","pages":"279-301"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9673774/pdf/nihms-1830711.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational brain & behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42113-022-00143-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many models of decision making assume accumulation of evidence to threshold as a core mechanism to predict response probabilities and response times. A spiking neural network model (Wang, 2002) instantiates these mechanisms at the level of biophysically-plausible pools of neurons with excitatory and inhibitory connections, and has numerous model parameters tuned by physiological measures. The diffusion model (Ratcliff, 1978) is a cognitive model that can be fitted to a range of behaviors and conditions. We investigated how parameters of the cognitive-level diffusion model relate to the parameters of a neural-level spiking model. In each simulated "experiment", we generated "data" from the spiking neural network by factorially combining a manipulation of choice difficulty (via the input to the spiking model) and a manipulation of one of the core parameters of the spiking model. We then fitted the diffusion model to these simulated data to observe how manipulation of each core spiking model parameter mapped on to fitted drift rate, response threshold, and non-decision time. Manipulations of parameters in the spiking model related to input sensitivity, threshold, and stimulus processing time mapped on to their conceptual analogues in the diffusion model, namely drift rate, threshold, and non-decision time. Manipulations of parameters in the spiking model with no direct analogue to the diffusion model, non-stimulus-specific background input, strength of recurrent excitation, and receptor conductances, mapped on to threshold in the diffusion model. We discuss implications of these results for interpretations of fits of the diffusion model to behavioral data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将尖峰神经网络模型与决策扩散模型联系起来。
许多决策模型都将证据积累到阈值作为预测反应概率和反应时间的核心机制。尖峰神经网络模型(Wang,2002 年)在具有兴奋和抑制连接的生物物理上可信的神经元池水平上将这些机制实例化,并通过生理测量调整了许多模型参数。扩散模型(Ratcliff,1978 年)是一种认知模型,可适用于一系列行为和条件。我们研究了认知水平扩散模型参数与神经水平尖峰模型参数之间的关系。在每个模拟 "实验 "中,我们通过对选择难度的操作(通过对尖峰模型的输入)和对尖峰模型核心参数之一的操作,从尖峰神经网络中生成 "数据"。然后,我们将扩散模型拟合到这些模拟数据中,观察对每个尖峰模型核心参数的操作如何映射到拟合的漂移率、反应阈值和非决策时间上。对尖峰模型中与输入灵敏度、阈值和刺激处理时间有关的参数的操作,可映射到扩散模型中的概念类似参数,即漂移率、阈值和非决策时间。对尖峰模型中与扩散模型没有直接对应关系的参数(非刺激特异性背景输入、递归兴奋强度和受体电导)的操作,则与扩散模型中的阈值对应。我们讨论了这些结果对解释扩散模型与行为数据拟合的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
期刊最新文献
Quantifying Individual Variability in Neural Control Circuit Regulation Using Single-Subject fMRI Towards Dependent Race Models for the Stop-Signal Paradigm Modeling Time Cell Neuron-Level Dynamics Probabilistic Choice Induced by Strength of Preference An Extension and Clinical Application of the SIMPLE Model to the Free Recall of Repeated and Semantically Related Items
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1