{"title":"On the Path to Optimal Alchemistry","authors":"Magnus Lundborg, Jack Lidmar, Berk Hess","doi":"10.1007/s10930-023-10137-1","DOIUrl":null,"url":null,"abstract":"<div><p>Alchemical free energy calculations have become a standard and widely used tool, in particular for calculating and comparing binding affinities of drugs. Although methods to compute such free energies have improved significantly over the last decades, the choice of path between the end states of interest is usually still the same as two decades ago. We will show that there is a fundamentally arbitrary, implicit choice of parametrization of this path. To address this, the notion of the length of a path or a metric is required. A metric recently introduced in the context of the accelerated weight histogram method also proves to be very useful here. We demonstrate that this metric can not only improve the efficiency of sampling along a given path, but that it can also be used to improve the actual choice of path. For a set of relevant use cases, the combination of these improvements can increase the efficiency of alchemical free energy calculations by up to a factor 16.</p></div>","PeriodicalId":793,"journal":{"name":"The Protein Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10930-023-10137-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Protein Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s10930-023-10137-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alchemical free energy calculations have become a standard and widely used tool, in particular for calculating and comparing binding affinities of drugs. Although methods to compute such free energies have improved significantly over the last decades, the choice of path between the end states of interest is usually still the same as two decades ago. We will show that there is a fundamentally arbitrary, implicit choice of parametrization of this path. To address this, the notion of the length of a path or a metric is required. A metric recently introduced in the context of the accelerated weight histogram method also proves to be very useful here. We demonstrate that this metric can not only improve the efficiency of sampling along a given path, but that it can also be used to improve the actual choice of path. For a set of relevant use cases, the combination of these improvements can increase the efficiency of alchemical free energy calculations by up to a factor 16.
期刊介绍:
The Protein Journal (formerly the Journal of Protein Chemistry) publishes original research work on all aspects of proteins and peptides. These include studies concerned with covalent or three-dimensional structure determination (X-ray, NMR, cryoEM, EPR/ESR, optical methods, etc.), computational aspects of protein structure and function, protein folding and misfolding, assembly, genetics, evolution, proteomics, molecular biology, protein engineering, protein nanotechnology, protein purification and analysis and peptide synthesis, as well as the elucidation and interpretation of the molecular bases of biological activities of proteins and peptides. We accept original research papers, reviews, mini-reviews, hypotheses, opinion papers, and letters to the editor.