SCEHR: Supervised Contrastive Learning for Clinical Risk Prediction using Electronic Health Records.

Chengxi Zang, Fei Wang
{"title":"SCEHR: Supervised Contrastive Learning for Clinical Risk Prediction using Electronic Health Records.","authors":"Chengxi Zang,&nbsp;Fei Wang","doi":"10.1109/icdm51629.2021.00097","DOIUrl":null,"url":null,"abstract":"<p><p>Contrastive learning has demonstrated promising performance in image and text domains either in a self-supervised or a supervised manner. In this work, we extend the supervised contrastive learning framework to clinical risk prediction problems based on longitudinal electronic health records (EHR). We propose a general supervised contrastive loss <math> <mrow><msub><mi>ℒ</mi> <mrow><mi>C</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>s</mi> <mi>t</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mspace></mspace> <mi>C</mi> <mi>r</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mspace></mspace> <mi>E</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi></mrow> </msub> <mo>+</mo> <mi>λ</mi> <msub><mi>ℒ</mi> <mrow><mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>v</mi> <mi>i</mi> <mi>s</mi> <mi>e</mi> <mi>d</mi> <mspace></mspace> <mi>C</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>s</mi> <mi>t</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mspace></mspace> <mi>R</mi> <mi>e</mi> <mi>g</mi> <mi>u</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> <mi>r</mi></mrow> </msub> </mrow> </math> for learning both binary classification (e.g. in-hospital mortality prediction) and multi-label classification (e.g. phenotyping) in a unified framework. Our supervised contrastive loss practices the key idea of contrastive learning, namely, pulling similar samples closer and pushing dissimilar ones apart from each other, simultaneously by its two components: <math> <mrow><msub><mi>ℒ</mi> <mrow><mi>C</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>s</mi> <mi>t</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mspace></mspace> <mi>C</mi> <mi>r</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mspace></mspace> <mi>E</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>o</mi> <mi>p</mi> <mi>y</mi></mrow> </msub> </mrow> </math> tries to contrast samples with learned anchors which represent positive and negative clusters, and <math> <mrow><msub><mi>ℒ</mi> <mrow><mi>S</mi> <mi>u</mi> <mi>p</mi> <mi>e</mi> <mi>r</mi> <mi>v</mi> <mi>i</mi> <mi>s</mi> <mi>e</mi> <mi>d</mi> <mspace></mspace> <mi>C</mi> <mi>o</mi> <mi>n</mi> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>s</mi> <mi>t</mi> <mi>i</mi> <mi>v</mi> <mi>e</mi> <mspace></mspace> <mi>R</mi> <mi>e</mi> <mi>g</mi> <mi>u</mi> <mi>l</mi> <mi>a</mi> <mi>r</mi> <mi>i</mi> <mi>z</mi> <mi>e</mi> <mi>r</mi></mrow> </msub> </mrow> </math> tries to contrast samples with each other according to their supervised labels. We propose two versions of the above supervised contrastive loss and our experiments on real-world EHR data demonstrate that our proposed loss functions show benefits in improving the performance of strong baselines and even state-of-the-art models on benchmarking tasks for clinical risk predictions. Our loss functions work well with extremely imbalanced data which are common for clinical risk prediction problems. Our loss functions can be easily used to replace (binary or multi-label) cross-entropy loss adopted in existing clinical predictive models. The Pytorch code is released at https://github.com/calvin-zcx/SCEHR.</p>","PeriodicalId":74565,"journal":{"name":"Proceedings. IEEE International Conference on Data Mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9692209/pdf/nihms-1847610.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdm51629.2021.00097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Contrastive learning has demonstrated promising performance in image and text domains either in a self-supervised or a supervised manner. In this work, we extend the supervised contrastive learning framework to clinical risk prediction problems based on longitudinal electronic health records (EHR). We propose a general supervised contrastive loss C o n t r a s t i v e C r o s s E n t r o p y + λ S u p e r v i s e d C o n t r a s t i v e R e g u l a r i z e r for learning both binary classification (e.g. in-hospital mortality prediction) and multi-label classification (e.g. phenotyping) in a unified framework. Our supervised contrastive loss practices the key idea of contrastive learning, namely, pulling similar samples closer and pushing dissimilar ones apart from each other, simultaneously by its two components: C o n t r a s t i v e C r o s s E n t r o p y tries to contrast samples with learned anchors which represent positive and negative clusters, and S u p e r v i s e d C o n t r a s t i v e R e g u l a r i z e r tries to contrast samples with each other according to their supervised labels. We propose two versions of the above supervised contrastive loss and our experiments on real-world EHR data demonstrate that our proposed loss functions show benefits in improving the performance of strong baselines and even state-of-the-art models on benchmarking tasks for clinical risk predictions. Our loss functions work well with extremely imbalanced data which are common for clinical risk prediction problems. Our loss functions can be easily used to replace (binary or multi-label) cross-entropy loss adopted in existing clinical predictive models. The Pytorch code is released at https://github.com/calvin-zcx/SCEHR.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SCEHR:使用电子健康记录进行临床风险预测的监督对比学习。
对比学习在图像和文本领域都有良好的表现,无论是自监督学习还是监督学习。在这项工作中,我们将监督对比学习框架扩展到基于纵向电子健康记录(EHR)的临床风险预测问题。我们建议采用一种综合监督对比损失ℒC o n t r s t i v e C r o s s e n t r o p y +λℒs p e r u v i s e d C o n t r s t i v e r e g u l r i z e r学习两个二进制分类(如住院死亡率预测)和多标记分类(例如表现型)在一个统一的框架中。我们的监督对比损失算法实践了对比学习的关键思想,即通过它的两个组成部分,同时把相似的样本拉得更近,把不相似的样本推得更远:ℒC o n t r s t i v e C r o s s e n t r o p y试图对比样本学习锚,它代表的积极的和消极的集群,我ℒs p e r u v s e d C o n t r s t i v e r e g u l r i z e r试图相互对比样本根据他们的监管标签。我们提出了上述监督对比损失的两个版本,我们在现实世界的电子病历数据上的实验表明,我们提出的损失函数在提高强基线甚至最先进的模型在临床风险预测基准任务上的性能方面具有优势。我们的损失函数可以很好地处理临床风险预测问题中常见的极度不平衡的数据。我们的损失函数可以很容易地取代现有临床预测模型中采用的(二值或多标签)交叉熵损失。Pytorch代码在https://github.com/calvin-zcx/SCEHR上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Personalized Healthcare via Capturing Disease Severity, Interaction, and Progression. Heterogeneous Treatment Effect Estimation with Subpopulation Identification for Personalized Medicine in Opioid Use Disorder. RoS-KD: A Robust Stochastic Knowledge Distillation Approach for Noisy Medical Imaging. Robust Unsupervised Domain Adaptation from A Corrupted Source. Communication Efficient Tensor Factorization for Decentralized Healthcare Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1