{"title":"Differentiation of the mesenchymal stem cells to pancreatic β-like cells in alginate/trimethyl chitosan/alginate microcapsules.","authors":"Seyedeh Roghayeh Hosseini, Sameereh Hashemi-Najafabadi, Fatemeh Bagheri","doi":"10.1007/s40204-022-00194-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cell therapy is one of the proposed treatments for diabetes. Cell encapsulation and differentiation inside the biodegradable polymers overcome the limitations such as islet deficiency and the host immune responses. This study was set to encapsulate the mesenchymal stem cells (MSCs) and differentiate them into insulin-producing cells (IPCs). Human bone marrow-mesenchymal stem cells (hBM-MSCs) were encapsulated in alginate/trimethyl chitosan/alginate (Alg/TMC/Alg) coating. At first, morphology and swelling properties of the cell-free microcapsules were investigated. Next, a three-step protocol was used in the presence of exendin-4 and nicotinamide to differentiate hBM-MSCs into IPCs. Viability of the encapsulated cells was investigated using MTT assay. The differentiated cells were analyzed using a real-time RT-PCR to investigate Glut-2, Insulin, Pdx-1, Ngn-3, nestin, and Isl-1 gene expression. The results revealed that differentiation of the encapsulated cells was higher than non-encapsulated cells. Also, dithizone staining in two-dimensional (2D) environment showed the differentiated cell clusters. In summary, here, hBM-MSCs after encapsulation in Alg/TMC/Alg microcapsules, as a new design, were differentiated properly in the presence of exendin-4 and nicotinamide as main inducers. A three-dimensional (3D) matrix is more similar to the native ECM in the body and prepares higher cell-cell contacts.</p>","PeriodicalId":20691,"journal":{"name":"Progress in Biomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9374854/pdf/40204_2022_Article_194.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40204-022-00194-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Cell therapy is one of the proposed treatments for diabetes. Cell encapsulation and differentiation inside the biodegradable polymers overcome the limitations such as islet deficiency and the host immune responses. This study was set to encapsulate the mesenchymal stem cells (MSCs) and differentiate them into insulin-producing cells (IPCs). Human bone marrow-mesenchymal stem cells (hBM-MSCs) were encapsulated in alginate/trimethyl chitosan/alginate (Alg/TMC/Alg) coating. At first, morphology and swelling properties of the cell-free microcapsules were investigated. Next, a three-step protocol was used in the presence of exendin-4 and nicotinamide to differentiate hBM-MSCs into IPCs. Viability of the encapsulated cells was investigated using MTT assay. The differentiated cells were analyzed using a real-time RT-PCR to investigate Glut-2, Insulin, Pdx-1, Ngn-3, nestin, and Isl-1 gene expression. The results revealed that differentiation of the encapsulated cells was higher than non-encapsulated cells. Also, dithizone staining in two-dimensional (2D) environment showed the differentiated cell clusters. In summary, here, hBM-MSCs after encapsulation in Alg/TMC/Alg microcapsules, as a new design, were differentiated properly in the presence of exendin-4 and nicotinamide as main inducers. A three-dimensional (3D) matrix is more similar to the native ECM in the body and prepares higher cell-cell contacts.
期刊介绍:
Progress in Biomaterials is a multidisciplinary, English-language publication of original contributions and reviews concerning studies of the preparation, performance and evaluation of biomaterials; the chemical, physical, biological and mechanical behavior of materials both in vitro and in vivo in areas such as tissue engineering and regenerative medicine, drug delivery and implants where biomaterials play a significant role. Including all areas of: design; preparation; performance and evaluation of nano- and biomaterials in tissue engineering; drug delivery systems; regenerative medicine; implantable medical devices; interaction of cells/stem cells on biomaterials and related applications.