Christian Aßmann, Jean-Christoph Gaasch, Doris Stingl
{"title":"A Bayesian Approach Towards Missing Covariate Data in Multilevel Latent Regression Models.","authors":"Christian Aßmann, Jean-Christoph Gaasch, Doris Stingl","doi":"10.1007/s11336-022-09888-0","DOIUrl":null,"url":null,"abstract":"<p><p>The measurement of latent traits and investigation of relations between these and a potentially large set of explaining variables is typical in psychology, economics, and the social sciences. Corresponding analysis often relies on surveyed data from large-scale studies involving hierarchical structures and missing values in the set of considered covariates. This paper proposes a Bayesian estimation approach based on the device of data augmentation that addresses the handling of missing values in multilevel latent regression models. Population heterogeneity is modeled via multiple groups enriched with random intercepts. Bayesian estimation is implemented in terms of a Markov chain Monte Carlo sampling approach. To handle missing values, the sampling scheme is augmented to incorporate sampling from the full conditional distributions of missing values. We suggest to model the full conditional distributions of missing values in terms of non-parametric classification and regression trees. This offers the possibility to consider information from latent quantities functioning as sufficient statistics. A simulation study reveals that this Bayesian approach provides valid inference and outperforms complete cases analysis and multiple imputation in terms of statistical efficiency and computation time involved. An empirical illustration using data on mathematical competencies demonstrates the usefulness of the suggested approach.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-022-09888-0","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The measurement of latent traits and investigation of relations between these and a potentially large set of explaining variables is typical in psychology, economics, and the social sciences. Corresponding analysis often relies on surveyed data from large-scale studies involving hierarchical structures and missing values in the set of considered covariates. This paper proposes a Bayesian estimation approach based on the device of data augmentation that addresses the handling of missing values in multilevel latent regression models. Population heterogeneity is modeled via multiple groups enriched with random intercepts. Bayesian estimation is implemented in terms of a Markov chain Monte Carlo sampling approach. To handle missing values, the sampling scheme is augmented to incorporate sampling from the full conditional distributions of missing values. We suggest to model the full conditional distributions of missing values in terms of non-parametric classification and regression trees. This offers the possibility to consider information from latent quantities functioning as sufficient statistics. A simulation study reveals that this Bayesian approach provides valid inference and outperforms complete cases analysis and multiple imputation in terms of statistical efficiency and computation time involved. An empirical illustration using data on mathematical competencies demonstrates the usefulness of the suggested approach.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.