{"title":"The coevolution between APOBEC3 and retrotransposons in primates.","authors":"Giorgia Modenini, Paolo Abondio, Alessio Boattini","doi":"10.1186/s13100-022-00283-1","DOIUrl":null,"url":null,"abstract":"<p><p>Retrotransposons are genetic elements with the ability to replicate in the genome using reverse transcriptase: they have been associated with the development of different biological structures, such as the Central Nervous System (CNS), and their high mutagenic potential has been linked to various diseases, including cancer and neurological disorders. Throughout evolution and over time, Primates and Homo had to cope with infections from viruses and bacteria, and also with endogenous retroelements. Therefore, host genomes have evolved numerous methods to counteract the activity of endogenous and exogenous pathogens, and the APOBEC3 family of mutators is a prime example of a defensive mechanism in this context.In most Primates, there are seven members of the APOBEC3 family of deaminase proteins: among their functions, there is the ability to inhibit the mobilization of retrotransposons and the functionality of viruses. The evolution of the APOBEC3 proteins found in Primates is correlated with the expansion of two major families of retrotransposons, i.e. ERV and LINE-1.In this review, we will discuss how the rapid expansion of the APOBEC3 family is linked to the evolution of retrotransposons, highlighting the strong evolutionary arms race that characterized the history of APOBEC3s and endogenous retroelements in Primates. Moreover, the possible role of this relationship will be assessed in the context of embryonic development and brain-associated diseases.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706992/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-022-00283-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Retrotransposons are genetic elements with the ability to replicate in the genome using reverse transcriptase: they have been associated with the development of different biological structures, such as the Central Nervous System (CNS), and their high mutagenic potential has been linked to various diseases, including cancer and neurological disorders. Throughout evolution and over time, Primates and Homo had to cope with infections from viruses and bacteria, and also with endogenous retroelements. Therefore, host genomes have evolved numerous methods to counteract the activity of endogenous and exogenous pathogens, and the APOBEC3 family of mutators is a prime example of a defensive mechanism in this context.In most Primates, there are seven members of the APOBEC3 family of deaminase proteins: among their functions, there is the ability to inhibit the mobilization of retrotransposons and the functionality of viruses. The evolution of the APOBEC3 proteins found in Primates is correlated with the expansion of two major families of retrotransposons, i.e. ERV and LINE-1.In this review, we will discuss how the rapid expansion of the APOBEC3 family is linked to the evolution of retrotransposons, highlighting the strong evolutionary arms race that characterized the history of APOBEC3s and endogenous retroelements in Primates. Moreover, the possible role of this relationship will be assessed in the context of embryonic development and brain-associated diseases.
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.