Mitchell J George, Marina Dias-Neto, Emanuel Ramos Tenorio, Max A Skibber, Jonathan M Morris, Gustavo S Oderich
{"title":"3D printing in aortic endovascular therapies.","authors":"Mitchell J George, Marina Dias-Neto, Emanuel Ramos Tenorio, Max A Skibber, Jonathan M Morris, Gustavo S Oderich","doi":"10.23736/S0021-9509.22.12407-9","DOIUrl":null,"url":null,"abstract":"<p><p>Endovascular treatment of aortic disease, including aneurysm or dissection, is expanding at a rapid pace. Often, the specific patient anatomy in these cases is complex. Additive manufacturing, also known as three-dimensional (3D) printing, is especially useful in the treatment of aortic disease, due to its ability to manufacture physical models of complex patient anatomy. Compared to other surgical procedures, endovascular aortic repair can readily exploit the advantages of 3D printing with regard to operative planning and preoperative training. To date, there have been numerous uses of 3D printing in the treatment of aortic pathology as an adjunct in presurgical planning and as a basis for training modules for fellows and residents. In this review, we summarize the current uses of 3D printing in the endovascular management of aortic disease. We also review the process of producing these models, the limitations of their applications, and future directions of 3D printing in this field.</p>","PeriodicalId":50245,"journal":{"name":"Journal of Cardiovascular Surgery","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23736/S0021-9509.22.12407-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 2
Abstract
Endovascular treatment of aortic disease, including aneurysm or dissection, is expanding at a rapid pace. Often, the specific patient anatomy in these cases is complex. Additive manufacturing, also known as three-dimensional (3D) printing, is especially useful in the treatment of aortic disease, due to its ability to manufacture physical models of complex patient anatomy. Compared to other surgical procedures, endovascular aortic repair can readily exploit the advantages of 3D printing with regard to operative planning and preoperative training. To date, there have been numerous uses of 3D printing in the treatment of aortic pathology as an adjunct in presurgical planning and as a basis for training modules for fellows and residents. In this review, we summarize the current uses of 3D printing in the endovascular management of aortic disease. We also review the process of producing these models, the limitations of their applications, and future directions of 3D printing in this field.
期刊介绍:
The Journal of Cardiovascular Surgery publishes scientific papers on cardiac, thoracic and vascular surgery. Manuscripts may be submitted in the form of editorials, original articles, review articles, case reports, therapeutical notes, special articles and letters to the Editor.
Manuscripts are expected to comply with the instructions to authors which conform to the Uniform Requirements for Manuscripts Submitted to Biomedical Editors by the International Committee of Medical Journal Editors (www.icmje.org). Articles not conforming to international standards will not be considered for acceptance.