A novel and easy to prepare azo-based bioreductive linker and its application in hypoxia-sensitive cationic liposomal doxorubicin: Synthesis, characterization, in vitro and in vivo studies in mice bearing C26 tumor
{"title":"A novel and easy to prepare azo-based bioreductive linker and its application in hypoxia-sensitive cationic liposomal doxorubicin: Synthesis, characterization, in vitro and in vivo studies in mice bearing C26 tumor","authors":"Mohammad Mashreghi , Mahdi Faal Maleki , Anis Askarizadeh , Helaleh Farshchi , Leila Farhoudi , Mahda Sadat Nasrollahzadeh , Mahere Rezazade Bazaz , Farzin Hadizadeh , Mahmoud Reza Jaafari","doi":"10.1016/j.chemphyslip.2022.105226","DOIUrl":null,"url":null,"abstract":"<div><p><span>This study designed and synthesized a cost-effective azo-based hypoxia-sensitive linker (AHSL) using commercially accessible, inexpensive raw materials and simple methods to apply in cationic nanoliposomes<span><span>. Then, AHSL was post-inserted into the cationic liposome (Cat-lip), and PEG-Azo-Cat-lip was prepared and characterized using DLS. The decrease in the zeta-potential of formulation from + 18.4 mV for Cat-lip to + 6.1 mV and the increase in the size of the PEG-Azo-Cat-lip indicated the successful post insertion of AHSL into the liposomes. The Doxorubicin (Dox) release study showed that </span>PEGylation results in a more stable PEG-Azo-Cat-lip than the Cat-lip. The increased cytotoxicity of the PEG-Azo-Cat-lip in the hypoxic condition also indicated the cleavage of the AHSL in the hypoxic environment. </span></span><em>In vivo</em><span> biodistribution<span> using animal imaging has shown higher tumor accumulation of the MPEG-Azo-Cat-lip than Cat-lip during the 120 h of the study. The results of anti-tumor activities and biosafety of the formulations also showed the higher efficiency of the MPEG-Azo-Cat-lip compared with the Cat-lip. The results of this study indicated the antitumor efficacy of this hypoxia-sensitive which merits further investigation.</span></span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308422000548","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
This study designed and synthesized a cost-effective azo-based hypoxia-sensitive linker (AHSL) using commercially accessible, inexpensive raw materials and simple methods to apply in cationic nanoliposomes. Then, AHSL was post-inserted into the cationic liposome (Cat-lip), and PEG-Azo-Cat-lip was prepared and characterized using DLS. The decrease in the zeta-potential of formulation from + 18.4 mV for Cat-lip to + 6.1 mV and the increase in the size of the PEG-Azo-Cat-lip indicated the successful post insertion of AHSL into the liposomes. The Doxorubicin (Dox) release study showed that PEGylation results in a more stable PEG-Azo-Cat-lip than the Cat-lip. The increased cytotoxicity of the PEG-Azo-Cat-lip in the hypoxic condition also indicated the cleavage of the AHSL in the hypoxic environment. In vivo biodistribution using animal imaging has shown higher tumor accumulation of the MPEG-Azo-Cat-lip than Cat-lip during the 120 h of the study. The results of anti-tumor activities and biosafety of the formulations also showed the higher efficiency of the MPEG-Azo-Cat-lip compared with the Cat-lip. The results of this study indicated the antitumor efficacy of this hypoxia-sensitive which merits further investigation.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.