Piali Bhati, Theodore C K Cheung, Gobika Sithamparanathan, Mark A Schmuckler
{"title":"Striking a balance in sports: the interrelation between children's sports experience, body size, and posture.","authors":"Piali Bhati, Theodore C K Cheung, Gobika Sithamparanathan, Mark A Schmuckler","doi":"10.3934/Neuroscience.2022016","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the relation between sports participation, body size, and postural control in children between 3 and 11 years of age. To explore this question, children's body sway was measured across multisensory conditions manipulating visual input (the presence versus absence of visual information) and proprioceptive input (varying stance widths), with postural sway in these conditions then related to reports of children's sports participation, and anthropometric measures. Corroborating well-known findings, postural sway was systematically influenced by multisensory factors, with the removal of visual information and narrower stance widths decreasing postural stability. Of more novelty, postural sway in the most stable stance, but without vision, was significantly predicted by measures of sports participation and body size variables, with these factors contributing independently to this prediction. Moreover, the impact on postural sway of having visual input, relative to removing visual input in unstable stances, was significantly predicted by sports participation in activities stressing changing stances and bases of support (e.g., dance, martial arts). Generally, these findings support multisensory and dynamic systems theories of perceptual-motor behavior, and also support sports specificity effects in assessments of the relation between posture and sports.</p>","PeriodicalId":7732,"journal":{"name":"AIMS Neuroscience","volume":"9 2","pages":"288-302"},"PeriodicalIF":3.1000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256521/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/Neuroscience.2022016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
This study investigated the relation between sports participation, body size, and postural control in children between 3 and 11 years of age. To explore this question, children's body sway was measured across multisensory conditions manipulating visual input (the presence versus absence of visual information) and proprioceptive input (varying stance widths), with postural sway in these conditions then related to reports of children's sports participation, and anthropometric measures. Corroborating well-known findings, postural sway was systematically influenced by multisensory factors, with the removal of visual information and narrower stance widths decreasing postural stability. Of more novelty, postural sway in the most stable stance, but without vision, was significantly predicted by measures of sports participation and body size variables, with these factors contributing independently to this prediction. Moreover, the impact on postural sway of having visual input, relative to removing visual input in unstable stances, was significantly predicted by sports participation in activities stressing changing stances and bases of support (e.g., dance, martial arts). Generally, these findings support multisensory and dynamic systems theories of perceptual-motor behavior, and also support sports specificity effects in assessments of the relation between posture and sports.
期刊介绍:
AIMS Neuroscience is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers from all areas in the field of neuroscience. The primary focus is to provide a forum in which to expedite the speed with which theoretical neuroscience progresses toward generating testable hypotheses. In the presence of current and developing technology that offers unprecedented access to functions of the nervous system at all levels, the journal is designed to serve the role of providing the widest variety of the best theoretical views leading to suggested studies. Single blind peer review is provided for all articles and commentaries.