George R. Abraham, Duuamene Nyimanu, Rhoda E. Kuc, Janet J. Maguire, Anthony P. Davenport, Stephen P. Hoole
{"title":"Trans-myocardial Extraction of Endothelin-1 Correlates with Increased Microcirculatory Resistance following Percutaneous Coronary Intervention","authors":"George R. Abraham, Duuamene Nyimanu, Rhoda E. Kuc, Janet J. Maguire, Anthony P. Davenport, Stephen P. Hoole","doi":"10.1155/2022/9154048","DOIUrl":null,"url":null,"abstract":"<div>\n <p><i>Objective</i>. Coronary microvascular dysfunction (CMD) can complicate successful percutaneous coronary intervention (PCI). The potent endogenous vasoconstrictor peptide Endothelin-1 (ET-1) may be an important mediator. To investigate the mechanism, we sought to define the peri-procedural trans-myocardial gradient (TMG-coronary sinus minus aortic root levels) of ET-1 and its precursor peptide – Big ET-1. We then assessed correlation with pressure-wire indices of CMD: coronary flow reserve (CFR) and index of microvascular resistance (IMR). <i>Methods</i>. Paired blood samples from the guide catheter and coronary sinus were collected before and after pressure-wire-guided PCI from patients with stable angina. Plasma was analysed using a specific enzyme-linked immunosorbent assay for quantification of ET-1 peptides and correlated with pressure-wire data. Non normally distributed continuous variables are presented as median [IQR]. <i>Results</i>. ET-1 and Big ET-1 increased post-PCI in the aorta (ET-1: 0.98 [0.76–1.26] pg/ml to 1.20 [1.03–1.67] pg/ml, <i>P</i> < 0.001 and Big ET-1: 2.74 [1.78–2.50] pg/ml to 3.36 [2.33–3.97] pg/ml, <i>P</i> < 0.001) and coronary sinus (ET-1: 1.00 [0.81–1.28] pg/ml to 1.09 [0.91–1.30] pg/ml, <i>P</i> = 0.03 and Big ET-1: 2.89 [1.95–3.83] pg/ml to 3.56 [2.66–4.83] pg/ml, <i>P</i> = 0.01). TMG of ET-1 shifted negatively compared with baseline following PCI reflecting significantly increased extraction (0.03 [−0.12–0.17] pg/ml pre-PCI versus −0.16 [−0.36–0.07] pg/ml post-PCI, <i>P</i> = 0.01). Increased ET-1 trans-myocardial extraction correlated with higher IMR (Pearson’s <i>r</i> = 0.293, <i>P</i> = 0.02) and increased hyperemic transit time (Pearson’s <i>r</i> = 0.333, <i>P</i> < 0.01). In subgroup analysis, mean ET-1 trans-myocardial extraction was higher amongst patients with high IMR compared with low IMR (0.73 pg/ml, SD:0.78 versus 0.17 pg/ml, SD:0.42, <i>P</i> = 0.02). There was additionally a numerical trend towards increased ET-1 trans-myocardial extraction in subgroups of patients with low CFR and in patients with Type 4a Myocardial Infarction, albeit not reaching statistical significance. <i>Conclusions</i>. Circulating ET-1 increases post-PCI and upregulated ET-1 trans-myocardial extraction contributes to increased microcirculatory resistance.</p>\n </div>","PeriodicalId":16329,"journal":{"name":"Journal of interventional cardiology","volume":"2022 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553718/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of interventional cardiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2022/9154048","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Coronary microvascular dysfunction (CMD) can complicate successful percutaneous coronary intervention (PCI). The potent endogenous vasoconstrictor peptide Endothelin-1 (ET-1) may be an important mediator. To investigate the mechanism, we sought to define the peri-procedural trans-myocardial gradient (TMG-coronary sinus minus aortic root levels) of ET-1 and its precursor peptide – Big ET-1. We then assessed correlation with pressure-wire indices of CMD: coronary flow reserve (CFR) and index of microvascular resistance (IMR). Methods. Paired blood samples from the guide catheter and coronary sinus were collected before and after pressure-wire-guided PCI from patients with stable angina. Plasma was analysed using a specific enzyme-linked immunosorbent assay for quantification of ET-1 peptides and correlated with pressure-wire data. Non normally distributed continuous variables are presented as median [IQR]. Results. ET-1 and Big ET-1 increased post-PCI in the aorta (ET-1: 0.98 [0.76–1.26] pg/ml to 1.20 [1.03–1.67] pg/ml, P < 0.001 and Big ET-1: 2.74 [1.78–2.50] pg/ml to 3.36 [2.33–3.97] pg/ml, P < 0.001) and coronary sinus (ET-1: 1.00 [0.81–1.28] pg/ml to 1.09 [0.91–1.30] pg/ml, P = 0.03 and Big ET-1: 2.89 [1.95–3.83] pg/ml to 3.56 [2.66–4.83] pg/ml, P = 0.01). TMG of ET-1 shifted negatively compared with baseline following PCI reflecting significantly increased extraction (0.03 [−0.12–0.17] pg/ml pre-PCI versus −0.16 [−0.36–0.07] pg/ml post-PCI, P = 0.01). Increased ET-1 trans-myocardial extraction correlated with higher IMR (Pearson’s r = 0.293, P = 0.02) and increased hyperemic transit time (Pearson’s r = 0.333, P < 0.01). In subgroup analysis, mean ET-1 trans-myocardial extraction was higher amongst patients with high IMR compared with low IMR (0.73 pg/ml, SD:0.78 versus 0.17 pg/ml, SD:0.42, P = 0.02). There was additionally a numerical trend towards increased ET-1 trans-myocardial extraction in subgroups of patients with low CFR and in patients with Type 4a Myocardial Infarction, albeit not reaching statistical significance. Conclusions. Circulating ET-1 increases post-PCI and upregulated ET-1 trans-myocardial extraction contributes to increased microcirculatory resistance.
期刊介绍:
Journal of Interventional Cardiology is a peer-reviewed, Open Access journal that provides a forum for cardiologists determined to stay current in the diagnosis, investigation, and management of patients with cardiovascular disease and its associated complications. The journal publishes original research articles, review articles, and clinical studies focusing on new procedures and techniques in all major subject areas in the field, including:
Acute coronary syndrome
Coronary disease
Congenital heart diseases
Myocardial infarction
Peripheral arterial disease
Valvular heart disease
Cardiac hemodynamics and physiology
Haemostasis and thrombosis