On springtails (Hexapoda: Collembola): a morphofunctional study of the jumping apparatus.

IF 2.6 2区 生物学 Q1 ZOOLOGY Frontiers in Zoology Pub Date : 2022-07-29 DOI:10.1186/s12983-022-00463-y
Fábio Gonçalves de Lima Oliveira
{"title":"On springtails (Hexapoda: Collembola): a morphofunctional study of the jumping apparatus.","authors":"Fábio Gonçalves de Lima Oliveira","doi":"10.1186/s12983-022-00463-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Springtails (Hexapoda: Collembola) are tiny organisms that lead a hidden life, mostly occuring deep in the soil and on leaf litter. They have a variety of interesting body morphology patterns, the most famous of which is the catapult-like structure that enables them to jump and flee from predators. This highly specialized jumping apparatus consists of a mobile furca, which when at rest fits into a trigger, \"the retinaculum\" on the ventral side of the abdomen. Despite the many studies that have attempted to investigate the jumping apparatus, the actual mechanisms involved in the jump, for example the way in which the furca is released by the retinaculum, how and where the mechanisms of spring and hydrostatic pressure originate, are still not properly understood. The morphology of the jumping apparatus of Orchesella cincta was investigated in detail using confocal laser scanning microscopy and MicroCT techniques for 3D reconstruction.</p><p><strong>Results: </strong>The morphology of O. cincta with both flexed and extended furca is analysed and described. The abdominal musculature involved in the jumping mechanism and relevant structures of the exoskeleton of retinaculum and furca are described in detail. With the data obtained in this study, hypotheses can be made about (1) where and how the spring and hydrostatic pressure mechanisms originate; (2) which muscles act on the extension and flexion of the furca; (3) which muscles act on the retinaculum and (4) how the retinaculum is released from the furca.</p><p><strong>Conclusions: </strong>The comparative morphological study proved informative, and shows how springtail jumping involves mechanisms unique to this taxon. Hydrostatic pressure regulation possibly varies between animals with distinct segmentation, and those with fused segmentation. Interesting cuticular characters were revealed, such as basal plates and sclerites related to the construction of the spring mechanism. The present study establishes itself as a model option for future morphofunctional studies on springtail's jumping. Analysis of videos and images using a high speed camera will be useful for understanding how the jump develops through take-off, aerial and landing phases.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9336013/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-022-00463-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Background: Springtails (Hexapoda: Collembola) are tiny organisms that lead a hidden life, mostly occuring deep in the soil and on leaf litter. They have a variety of interesting body morphology patterns, the most famous of which is the catapult-like structure that enables them to jump and flee from predators. This highly specialized jumping apparatus consists of a mobile furca, which when at rest fits into a trigger, "the retinaculum" on the ventral side of the abdomen. Despite the many studies that have attempted to investigate the jumping apparatus, the actual mechanisms involved in the jump, for example the way in which the furca is released by the retinaculum, how and where the mechanisms of spring and hydrostatic pressure originate, are still not properly understood. The morphology of the jumping apparatus of Orchesella cincta was investigated in detail using confocal laser scanning microscopy and MicroCT techniques for 3D reconstruction.

Results: The morphology of O. cincta with both flexed and extended furca is analysed and described. The abdominal musculature involved in the jumping mechanism and relevant structures of the exoskeleton of retinaculum and furca are described in detail. With the data obtained in this study, hypotheses can be made about (1) where and how the spring and hydrostatic pressure mechanisms originate; (2) which muscles act on the extension and flexion of the furca; (3) which muscles act on the retinaculum and (4) how the retinaculum is released from the furca.

Conclusions: The comparative morphological study proved informative, and shows how springtail jumping involves mechanisms unique to this taxon. Hydrostatic pressure regulation possibly varies between animals with distinct segmentation, and those with fused segmentation. Interesting cuticular characters were revealed, such as basal plates and sclerites related to the construction of the spring mechanism. The present study establishes itself as a model option for future morphofunctional studies on springtail's jumping. Analysis of videos and images using a high speed camera will be useful for understanding how the jump develops through take-off, aerial and landing phases.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
弹尾动物(六足目:弹尾目):弹跳器官的形态功能研究。
背景:弹跳虫(六足目:弹尾目)是一种隐蔽生活的微小生物,大多发生在土壤深处和落叶层上。它们有各种有趣的身体形态模式,其中最著名的是弹弓状的结构,使它们能够跳跃并逃离捕食者。这种高度专业化的跳跃装置由一个可移动的furca组成,当它静止时,它会进入一个触发器,即腹部腹侧的“视网膜带”。尽管有许多研究试图调查跳跃装置,但涉及跳跃的实际机制,例如视网膜带释放furca的方式,弹簧和静水压力的机制如何以及在哪里产生,仍然没有得到正确的理解。利用激光共聚焦扫描显微镜和MicroCT三维重建技术详细研究了中华绒球菌(Orchesella cinta)跳跃器的形态。结果:对弯曲furca和伸展furca的O. cinta的形态进行了分析和描述。详细描述了参与跳跃机制的腹肌组织以及视网膜带和furca外骨骼的相关结构。根据本研究获得的数据,可以做出以下假设:(1)弹簧和静水压力机制起源于何处以及如何产生;(2)哪些肌肉作用于furca的伸展和屈曲;(3)哪些肌肉作用于视网膜带和(4)视网膜带如何从furca中释放出来。结论:比较形态学研究提供了信息,并显示了弹尾跳跃是如何涉及到这个分类单元所特有的机制。具有明显分割和融合分割的动物的静水压力调节可能会有所不同。揭示了有趣的表皮特征,如与弹簧机构结构有关的基板和硬膜。本研究为今后弹尾跳跃的形态功能研究提供了一种模型选择。使用高速摄像机分析视频和图像将有助于了解跳跃如何通过起飞,空中和着陆阶段发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life. As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem. Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost. The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.
期刊最新文献
Complex interplay between the microfluidic and optical properties of Hoplia sp. beetles Massive citizen science sampling and integrated taxonomic approach unravel Danish cryptogam-dwelling tardigrade fauna Male reproductive system of the deep-sea acorn worm Quatuoralisia malakhovi (Hemichordata, Enteropneusta, Torquaratoridae) from the Bering Sea Are toe fringes important for lizard burying in highly mobile sand? Human activities reshape the spatial overlap between North Chinese leopard and its wild ungulate prey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1