Dysregulation of Tweak and Fn14 in skeletal muscle of spinal muscular atrophy mice.

IF 5.3 2区 医学 Q2 CELL BIOLOGY Skeletal Muscle Pub Date : 2022-07-28 DOI:10.1186/s13395-022-00301-z
Katharina E Meijboom, Emma R Sutton, Eve McCallion, Emily McFall, Daniel Anthony, Benjamin Edwards, Sabrina Kubinski, Ines Tapken, Ines Bünermann, Gareth Hazell, Nina Ahlskog, Peter Claus, Kay E Davies, Rashmi Kothary, Matthew J A Wood, Melissa Bowerman
{"title":"Dysregulation of Tweak and Fn14 in skeletal muscle of spinal muscular atrophy mice.","authors":"Katharina E Meijboom,&nbsp;Emma R Sutton,&nbsp;Eve McCallion,&nbsp;Emily McFall,&nbsp;Daniel Anthony,&nbsp;Benjamin Edwards,&nbsp;Sabrina Kubinski,&nbsp;Ines Tapken,&nbsp;Ines Bünermann,&nbsp;Gareth Hazell,&nbsp;Nina Ahlskog,&nbsp;Peter Claus,&nbsp;Kay E Davies,&nbsp;Rashmi Kothary,&nbsp;Matthew J A Wood,&nbsp;Melissa Bowerman","doi":"10.1186/s13395-022-00301-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Spinal muscular atrophy (SMA) is a childhood neuromuscular disorder caused by depletion of the survival motor neuron (SMN) protein. SMA is characterized by the selective death of spinal cord motor neurons, leading to progressive muscle wasting. Loss of skeletal muscle in SMA is a combination of denervation-induced muscle atrophy and intrinsic muscle pathologies. Elucidation of the pathways involved is essential to identify the key molecules that contribute to and sustain muscle pathology. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14) pathway has been shown to play a critical role in the regulation of denervation-induced muscle atrophy as well as muscle proliferation, differentiation, and metabolism in adults. However, it is not clear whether this pathway would be important in highly dynamic and developing muscle.</p><p><strong>Methods: </strong>We thus investigated the potential role of the TWEAK/Fn14 pathway in SMA muscle pathology, using the severe Taiwanese Smn<sup>-/-</sup>; SMN2 and the less severe Smn<sup>2B/-</sup> SMA mice, which undergo a progressive neuromuscular decline in the first three post-natal weeks. We also used experimental models of denervation and muscle injury in pre-weaned wild-type (WT) animals and siRNA-mediated knockdown in C2C12 muscle cells to conduct additional mechanistic investigations.</p><p><strong>Results: </strong>Here, we report significantly dysregulated expression of Tweak, Fn14, and previously proposed downstream effectors during disease progression in skeletal muscle of the two SMA mouse models. In addition, siRNA-mediated Smn knockdown in C2C12 myoblasts suggests a genetic interaction between Smn and the TWEAK/Fn14 pathway. Further analyses of SMA, Tweak<sup>-/-</sup>, and Fn14<sup>-/-</sup> mice revealed dysregulated myopathy, myogenesis, and glucose metabolism pathways as a common skeletal muscle feature, providing further evidence in support of a relationship between the TWEAK/Fn14 pathway and Smn. Finally, administration of the TWEAK/Fn14 agonist Fc-TWEAK improved disease phenotypes in the two SMA mouse models.</p><p><strong>Conclusions: </strong>Our study provides mechanistic insights into potential molecular players that contribute to muscle pathology in SMA and into likely differential responses of the TWEAK/Fn14 pathway in developing muscle.</p>","PeriodicalId":21747,"journal":{"name":"Skeletal Muscle","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9331072/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Skeletal Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13395-022-00301-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Background: Spinal muscular atrophy (SMA) is a childhood neuromuscular disorder caused by depletion of the survival motor neuron (SMN) protein. SMA is characterized by the selective death of spinal cord motor neurons, leading to progressive muscle wasting. Loss of skeletal muscle in SMA is a combination of denervation-induced muscle atrophy and intrinsic muscle pathologies. Elucidation of the pathways involved is essential to identify the key molecules that contribute to and sustain muscle pathology. The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/TNF receptor superfamily member fibroblast growth factor-inducible 14 (Fn14) pathway has been shown to play a critical role in the regulation of denervation-induced muscle atrophy as well as muscle proliferation, differentiation, and metabolism in adults. However, it is not clear whether this pathway would be important in highly dynamic and developing muscle.

Methods: We thus investigated the potential role of the TWEAK/Fn14 pathway in SMA muscle pathology, using the severe Taiwanese Smn-/-; SMN2 and the less severe Smn2B/- SMA mice, which undergo a progressive neuromuscular decline in the first three post-natal weeks. We also used experimental models of denervation and muscle injury in pre-weaned wild-type (WT) animals and siRNA-mediated knockdown in C2C12 muscle cells to conduct additional mechanistic investigations.

Results: Here, we report significantly dysregulated expression of Tweak, Fn14, and previously proposed downstream effectors during disease progression in skeletal muscle of the two SMA mouse models. In addition, siRNA-mediated Smn knockdown in C2C12 myoblasts suggests a genetic interaction between Smn and the TWEAK/Fn14 pathway. Further analyses of SMA, Tweak-/-, and Fn14-/- mice revealed dysregulated myopathy, myogenesis, and glucose metabolism pathways as a common skeletal muscle feature, providing further evidence in support of a relationship between the TWEAK/Fn14 pathway and Smn. Finally, administration of the TWEAK/Fn14 agonist Fc-TWEAK improved disease phenotypes in the two SMA mouse models.

Conclusions: Our study provides mechanistic insights into potential molecular players that contribute to muscle pathology in SMA and into likely differential responses of the TWEAK/Fn14 pathway in developing muscle.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脊髓性肌萎缩小鼠骨骼肌中扭扭和Fn14的失调。
背景:脊髓性肌萎缩症(SMA)是一种由存活运动神经元(SMN)蛋白耗损引起的儿童神经肌肉疾病。SMA的特点是脊髓运动神经元选择性死亡,导致进行性肌肉萎缩。SMA骨骼肌的丧失是失神经支配引起的肌肉萎缩和内在肌肉病变的结合。阐明所涉及的途径对于确定促成和维持肌肉病理的关键分子是必不可少的。肿瘤坏死因子样细胞凋亡弱诱导剂(TWEAK)/TNF受体超家族成员成纤维细胞生长因子诱导14 (Fn14)通路已被证明在成人去神经支配诱导的肌肉萎缩以及肌肉增殖、分化和代谢的调节中发挥关键作用。然而,尚不清楚这一途径在高动态和发育中的肌肉中是否重要。方法:因此,我们研究了TWEAK/Fn14通路在SMA肌肉病理中的潜在作用,使用重度台湾Smn-/-;SMN2和较轻的Smn2B/- SMA小鼠,在出生后的前三周经历进行性神经肌肉衰退。我们还使用断奶前野生型(WT)动物去神经支配和肌肉损伤的实验模型以及C2C12肌肉细胞中sirna介导的敲低来进行额外的机制研究。结果:在这里,我们报告了在两种SMA小鼠模型的骨骼肌疾病进展过程中,Tweak、Fn14和先前提出的下游效应物的表达显著失调。此外,C2C12成肌细胞中sirna介导的Smn敲低表明Smn与TWEAK/Fn14通路之间存在遗传相互作用。对SMA、Tweak-/-和Fn14-/-小鼠的进一步分析显示,肌病、肌肉发生和葡萄糖代谢途径失调是骨骼肌的共同特征,为支持Tweak /Fn14途径与Smn之间的关系提供了进一步的证据。最后,应用TWEAK/Fn14激动剂Fc-TWEAK改善了两种SMA小鼠模型的疾病表型。结论:我们的研究提供了对SMA肌肉病理的潜在分子参与者的机制见解,以及对肌肉发育中TWEAK/Fn14通路可能的差异反应的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Skeletal Muscle
Skeletal Muscle CELL BIOLOGY-
CiteScore
9.10
自引率
0.00%
发文量
25
审稿时长
12 weeks
期刊介绍: The only open access journal in its field, Skeletal Muscle publishes novel, cutting-edge research and technological advancements that investigate the molecular mechanisms underlying the biology of skeletal muscle. Reflecting the breadth of research in this area, the journal welcomes manuscripts about the development, metabolism, the regulation of mass and function, aging, degeneration, dystrophy and regeneration of skeletal muscle, with an emphasis on understanding adult skeletal muscle, its maintenance, and its interactions with non-muscle cell types and regulatory modulators. Main areas of interest include: -differentiation of skeletal muscle- atrophy and hypertrophy of skeletal muscle- aging of skeletal muscle- regeneration and degeneration of skeletal muscle- biology of satellite and satellite-like cells- dystrophic degeneration of skeletal muscle- energy and glucose homeostasis in skeletal muscle- non-dystrophic genetic diseases of skeletal muscle, such as Spinal Muscular Atrophy and myopathies- maintenance of neuromuscular junctions- roles of ryanodine receptors and calcium signaling in skeletal muscle- roles of nuclear receptors in skeletal muscle- roles of GPCRs and GPCR signaling in skeletal muscle- other relevant aspects of skeletal muscle biology. In addition, articles on translational clinical studies that address molecular and cellular mechanisms of skeletal muscle will be published. Case reports are also encouraged for submission. Skeletal Muscle reflects the breadth of research on skeletal muscle and bridges gaps between diverse areas of science for example cardiac cell biology and neurobiology, which share common features with respect to cell differentiation, excitatory membranes, cell-cell communication, and maintenance. Suitable articles are model and mechanism-driven, and apply statistical principles where appropriate; purely descriptive studies are of lesser interest.
期刊最新文献
Spiny mice are primed but fail to regenerate volumetric skeletal muscle loss injuries. Decreased number of satellite cells-derived myonuclei in both fast- and slow-twitch muscles in HeyL-KO mice during voluntary running exercise. Metabolic pathways for removing reactive aldehydes are diminished in the skeletal muscle during heart failure. Exercise, disease state and sex influence the beneficial effects of Fn14-depletion on survival and muscle pathology in the SOD1G93A amyotrophic lateral sclerosis (ALS) mouse model. Isolation of small extracellular vesicles from regenerating muscle tissue using tangential flow filtration and size exclusion chromatography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1