Raffaele Falsaperla, Giovanna Vitaliti, Simona Domenica Marino, Andrea Domenico Praticò, Janette Mailo, Michela Spatuzza, Maria Roberta Cilio, Rosario Foti, Martino Ruggieri
{"title":"Graph theory in paediatric epilepsy: A systematic review.","authors":"Raffaele Falsaperla, Giovanna Vitaliti, Simona Domenica Marino, Andrea Domenico Praticò, Janette Mailo, Michela Spatuzza, Maria Roberta Cilio, Rosario Foti, Martino Ruggieri","doi":"10.1080/19585969.2022.2043128","DOIUrl":null,"url":null,"abstract":"<p><p>Graph theoretical studies have been designed to investigate network topologies during life. Network science and graph theory methods may contribute to a better understanding of brain function, both normal and abnormal, throughout developmental stages. The degree to which childhood epilepsies exert a significant effect on brain network organisation and cognition remains unclear. The hypothesis suggests that the formation of abnormal networks associated with epileptogenesis early in life causes a disruption in normal brain network development and cognition, reflecting abnormalities in later life. Neurological diseases with onset during critical stages of brain maturation, including childhood epilepsy, may threaten this orderly neurodevelopmental process. According to the hypothesis that the formation of abnormal networks associated with epileptogenesis in early life causes a disruption in normal brain network development, it is then mandatory to perform a proper examination of children with new-onset epilepsy early in the disease course and a deep study of their brain network organisation over time. In regards, graph theoretical analysis could add more information. In order to facilitate further development of graph theory in childhood, we performed a systematic review to describe its application in functional dynamic connectivity using electroencephalographic (EEG) analysis, focussing on paediatric epilepsy.</p>","PeriodicalId":54343,"journal":{"name":"Dialogues in Clinical Neuroscience","volume":"23 1","pages":"3-13"},"PeriodicalIF":8.3000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286734/pdf/","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dialogues in Clinical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19585969.2022.2043128","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 12
Abstract
Graph theoretical studies have been designed to investigate network topologies during life. Network science and graph theory methods may contribute to a better understanding of brain function, both normal and abnormal, throughout developmental stages. The degree to which childhood epilepsies exert a significant effect on brain network organisation and cognition remains unclear. The hypothesis suggests that the formation of abnormal networks associated with epileptogenesis early in life causes a disruption in normal brain network development and cognition, reflecting abnormalities in later life. Neurological diseases with onset during critical stages of brain maturation, including childhood epilepsy, may threaten this orderly neurodevelopmental process. According to the hypothesis that the formation of abnormal networks associated with epileptogenesis in early life causes a disruption in normal brain network development, it is then mandatory to perform a proper examination of children with new-onset epilepsy early in the disease course and a deep study of their brain network organisation over time. In regards, graph theoretical analysis could add more information. In order to facilitate further development of graph theory in childhood, we performed a systematic review to describe its application in functional dynamic connectivity using electroencephalographic (EEG) analysis, focussing on paediatric epilepsy.
期刊介绍:
Dialogues in Clinical Neuroscience (DCNS) endeavors to bridge the gap between clinical neuropsychiatry and the neurosciences by offering state-of-the-art information and original insights into pertinent clinical, biological, and therapeutic aspects. As an open access journal, DCNS ensures accessibility to its content for all interested parties. Each issue is curated to include expert reviews, original articles, and brief reports, carefully selected to offer a comprehensive understanding of the evolving landscape in clinical neuroscience. Join us in advancing knowledge and fostering dialogue in this dynamic field.