Regularized Variational Estimation for Exploratory Item Factor Analysis.

IF 2.9 2区 心理学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Psychometrika Pub Date : 2024-03-01 Epub Date: 2022-07-13 DOI:10.1007/s11336-022-09874-6
April E Cho, Jiaying Xiao, Chun Wang, Gongjun Xu
{"title":"Regularized Variational Estimation for Exploratory Item Factor Analysis.","authors":"April E Cho, Jiaying Xiao, Chun Wang, Gongjun Xu","doi":"10.1007/s11336-022-09874-6","DOIUrl":null,"url":null,"abstract":"<p><p>Item factor analysis (IFA), also known as Multidimensional Item Response Theory (MIRT), is a general framework for specifying the functional relationship between respondents' multiple latent traits and their responses to assessment items. The key element in MIRT is the relationship between the items and the latent traits, so-called item factor loading structure. The correct specification of this loading structure is crucial for accurate calibration of item parameters and recovery of individual latent traits. This paper proposes a regularized Gaussian Variational Expectation Maximization (GVEM) algorithm to efficiently infer item factor loading structure directly from data. The main idea is to impose an adaptive <math><msub><mi>L</mi> <mn>1</mn></msub> </math> -type penalty to the variational lower bound of the likelihood to shrink certain loadings to 0. This new algorithm takes advantage of the computational efficiency of GVEM algorithm and is suitable for high-dimensional MIRT applications. Simulation studies show that the proposed method accurately recovers the loading structure and is computationally efficient. The new method is also illustrated using the National Education Longitudinal Study of 1988 (NELS:88) mathematics and science assessment data.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s11336-022-09874-6","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Item factor analysis (IFA), also known as Multidimensional Item Response Theory (MIRT), is a general framework for specifying the functional relationship between respondents' multiple latent traits and their responses to assessment items. The key element in MIRT is the relationship between the items and the latent traits, so-called item factor loading structure. The correct specification of this loading structure is crucial for accurate calibration of item parameters and recovery of individual latent traits. This paper proposes a regularized Gaussian Variational Expectation Maximization (GVEM) algorithm to efficiently infer item factor loading structure directly from data. The main idea is to impose an adaptive L 1 -type penalty to the variational lower bound of the likelihood to shrink certain loadings to 0. This new algorithm takes advantage of the computational efficiency of GVEM algorithm and is suitable for high-dimensional MIRT applications. Simulation studies show that the proposed method accurately recovers the loading structure and is computationally efficient. The new method is also illustrated using the National Education Longitudinal Study of 1988 (NELS:88) mathematics and science assessment data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于探索性项目因素分析的正则化变量估计。
项目因素分析(IFA),又称多维项目反应理论(MIRT),是一种用于明确受访者的多个潜在特质与其对测评项目的反应之间的功能关系的通用框架。多维项目反应理论的关键因素是项目与潜在特质之间的关系,即所谓的项目因子负荷结构。正确说明这种负荷结构对于准确校准项目参数和恢复个体潜在特质至关重要。本文提出了一种正则化高斯变分期望最大化(GVEM)算法,可直接从数据中有效推断项目因子载荷结构。这种新算法利用了 GVEM 算法的计算效率优势,适用于高维 MIRT 应用。仿真研究表明,所提出的方法能准确地恢复载荷结构,而且计算效率高。新方法还利用 1988 年全国教育纵向研究(NELS:88)的数学和科学评估数据进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychometrika
Psychometrika 数学-数学跨学科应用
CiteScore
4.40
自引率
10.00%
发文量
72
审稿时长
>12 weeks
期刊介绍: The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.
期刊最新文献
Rejoinder to McNeish and Mislevy: What Does Psychological Measurement Require? Are Sum Scores a Great Accomplishment of Psychometrics or Intuitive Test Theory? Correction to: Generalized Structured Component Analysis Accommodating Convex Components: A Knowledge-Based Multivariate Method with Interpretable Composite Indexes. Variational Estimation for Multidimensional Generalized Partial Credit Model. Proof of Reliability Convergence to 1 at Rate of Spearman-Brown Formula for Random Test Forms and Irrespective of Item Pool Dimensionality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1