Justine R Magnuson, Hogun J Kang, Mathew I B Debenham, Chris J McNeil, Brian H Dalton
{"title":"Effects of sleep deprivation on perceived and performance fatigability in females: An exploratory study.","authors":"Justine R Magnuson, Hogun J Kang, Mathew I B Debenham, Chris J McNeil, Brian H Dalton","doi":"10.1080/17461391.2022.2115944","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep deprivation (SD) is prevalent and impairs motor function; however, little is known about its effect on perceived and performance fatigability, especially in females. To examine the effects of 24 h of SD on these attributes of fatigue, nine females completed a 20-min isometric, sustained elbow flexion contraction, followed by 10 min of recovery. The superimposed twitch (SIT) elicited via transcranial magnetic stimulation (TMS) assessed supraspinal drive. Biceps brachii electromyographic data indicated neural excitability in response to stimulation over the motor cortex (motor evoked potential; MEP), corticospinal tract (cervicomedullary motor evoked potential; CMEP), and brachial plexus (maximal M-wave; Mmax). MEPs and CMEPs were recorded during a TMS-induced silent period. At baseline, ratings of perceived effort (RPE; 2.9 vs. 1.6) and fatigue (RPF; 6.9 vs. 2.9), were higher for SD than control. Across the 20-min contraction, RPE increased from 2.2 to 7.6, SIT and MEP/CMEP increased by 284 and 474%, respectively, whereas maximal voluntary isometric contraction (MVC) torque and CMEP/Mmax decreased by 26 and 57%, respectively. No differences were found across conditions for MVC, SIT, Mmax, CMEP/Mmax, or MEP/CMEP prior to, during, and after the fatiguing task. During recovery, RPE (4.9 vs. 3.4), RPF (7.6 vs. 2.8), and perception of task difficulty (5.5 vs. 4.5) were greater for SD than control. Acute SD does not appear to alter performance fatigability development and subsequent recovery; however, it increases perceptions of fatigue, effort, and task difficulty. Thus, the disconnect between perceived and actual neuromuscular capacity following a sustained, submaximal isometric task is exacerbated by SD.<b>Highlights</b>Sleep deprivation did not alter supraspinal drive or neural excitability during and after a 20-min submaximal elbow flexion contractionSleep deprivation increased perceived fatigue and perception of task difficultyThe disconnect between perceived and performance fatigability is exacerbated in a sleep-deprived state.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17461391.2022.2115944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Sleep deprivation (SD) is prevalent and impairs motor function; however, little is known about its effect on perceived and performance fatigability, especially in females. To examine the effects of 24 h of SD on these attributes of fatigue, nine females completed a 20-min isometric, sustained elbow flexion contraction, followed by 10 min of recovery. The superimposed twitch (SIT) elicited via transcranial magnetic stimulation (TMS) assessed supraspinal drive. Biceps brachii electromyographic data indicated neural excitability in response to stimulation over the motor cortex (motor evoked potential; MEP), corticospinal tract (cervicomedullary motor evoked potential; CMEP), and brachial plexus (maximal M-wave; Mmax). MEPs and CMEPs were recorded during a TMS-induced silent period. At baseline, ratings of perceived effort (RPE; 2.9 vs. 1.6) and fatigue (RPF; 6.9 vs. 2.9), were higher for SD than control. Across the 20-min contraction, RPE increased from 2.2 to 7.6, SIT and MEP/CMEP increased by 284 and 474%, respectively, whereas maximal voluntary isometric contraction (MVC) torque and CMEP/Mmax decreased by 26 and 57%, respectively. No differences were found across conditions for MVC, SIT, Mmax, CMEP/Mmax, or MEP/CMEP prior to, during, and after the fatiguing task. During recovery, RPE (4.9 vs. 3.4), RPF (7.6 vs. 2.8), and perception of task difficulty (5.5 vs. 4.5) were greater for SD than control. Acute SD does not appear to alter performance fatigability development and subsequent recovery; however, it increases perceptions of fatigue, effort, and task difficulty. Thus, the disconnect between perceived and actual neuromuscular capacity following a sustained, submaximal isometric task is exacerbated by SD.HighlightsSleep deprivation did not alter supraspinal drive or neural excitability during and after a 20-min submaximal elbow flexion contractionSleep deprivation increased perceived fatigue and perception of task difficultyThe disconnect between perceived and performance fatigability is exacerbated in a sleep-deprived state.